Asymmetric Conjugate Addition

Bryant E. Rossiter and Nicole M. Swingle

Department of Chemistry, Brigham Young University, Provo, Utah 84602

Received March 4, 1992 (Revised Manuscript Received May 14, 1992)

Contents

I.	Introduction							
II.		astereoselective Conjugate Addition to alemic Substrates	774					
	A.	α,β -Unsaturated Esters	774					
	B.	α, β -Unsaturated Amides	776					
	C.	N-Enoyl Sultams	779					
	D.	2-Cycloalkenones	779					
	E. Vinyl Acetals, Oxazolidines, and Imidazolidines							
	F.	Vinyl and Aryl Oxazolines	782					
	G.	α , β -Unsaturated Aldimines	790					
III.	Enantioselective Conjugate Addition of Organometallics to Prochiral α,β -Unsaturated Ketones							
	A.	Scalemic Lithium Organo(alkoxo)cuprates	790					
	B.	Scalemic Lithium Organo(amido)cuprates	793					
	C.	Scalemic Lithium Diorganocuprates	793					
	D.	Lithium Diorganocuprates with Scalemic Noncovalently Bound Ligands	798					
	E.	Dialkylzinc Reagents and Scalemic Catalysts	799					
	F.	Grignard Reagents Catalyzed by Scalemic Arenethiolatocopper(I) Complexes	801					
	G.	Grignard Reagents with Scalemic Zinc Catalysts	802					
IV.	Or	antioselective Conjugate Addition of ganolithium Reagents to Prochiral β-Unsaturated Aldimines	803					
٧.	Su	mmary	805					
VI.	References							

I. Introduction

Conjugate addition of organometallic reagents to α,β -unsaturated organic substrates is an important and well-known method of assembling structurally complex organic molecules. In these reactions, the organic portion of an organometallic reagent adds to the β -carbon of an electron-deficient alkene, giving first a stabilized carbanion and then, after protonation or some other form of quenching, the β -substituted product (eq 1). Substrates used in this reaction are usually α,β -

$$\begin{matrix} R_1 & E \\ R_{R_2} & Z & + & R_1 & E \\ R_{R_2} & & & (1) \end{matrix}$$

Z = COR, CHO, COOR, CONR₂, CN, SOR, SO₂R, etc.

Bryant E. Rossiter received his B.S. in chemistry from Brigham Young University in 1977 and his Ph.D. from Stanford University in 1981 working under the direction of Prof. K. Barry Sharpless. In 1981 he became a senior scientist at Hoffmann LaRoche, Nutley, New Jersey, working in the organometallic group of the process research labs. During his time at Hoffmann LaRoche he worked for one year in the central research labs in Basle, Switzerland. In 1985 he accepted a position as assistant professor at Brigham Young University, where he currently resides. In 1988, he survived a battle with cancer, in part, because of the availability of chemotherapeutic drugs. In this respect, he offers heartfelt thanks to all who have contributed to the development of anticancer compounds. Professor Rossiter's research interests include the development of enantioselective organometallic reactions and chiral stationary phases for gas and supercritical fluid chromatography.

Nicole M. Swingle received her B.S. in chemistry in 1990 from Brigham Young University. She is currently a graduate student in the Brigham Young University organic chemistry program and is working toward completion of a master's degree under the direction of Prof. Bryant E. Rossiter. Her research concerns asymmetric conjugate addition to cycloalkenones using cuprates with chiral tetraamine ligands.

unsaturated ketones, aldehydes, esters, amides, sulfoxides, or nitro compounds. Reactions involving organometallic reagents are generally run under anhydrous, oxygen-free conditions. Often referred to as 1,4-addition, these reactions use a variety of organo-

Table 1. Diastereoselective Conjugate Addition of Organometallics to Scalemic α,β -Unsaturated Esters

$$R_1$$
OR*

1. RM

2. OH'
3. H_3O^+

entry	R ₁	R*OHa	RM	T, °C	% yield	% ee	R/S	ref
1	Me	1	PhMgBr/cat. CuCl	-15	61	58	R	8
2		4 2		-8 15	64	10	R	9
3 4		3		-15	50 58	68 74	R R	8
5	Ph	1	n-BuMgCl/CuCl		56	17		
6	111	4	n-Bulvigot/ Cuci		61	27	(-)	
7		2			40	22	(-)	
8		3			58	17	(-)	
9	Me	5	PhCu·BF ₃	-70	76	>99	Ŕ	12
10			n-BuCu⋅BF ₃		75	>99	R	
11	Me(Z isomer)		PhCu·BF ₃		36	24	S	
12	Me (Z isomer)		n -BuCu-BF $_3$		76	70	\boldsymbol{R}	
L3	n-Bu		MeCu·BF ₃		28	78	\boldsymbol{R}	
.4		_	$MeCuP(n-Bu)_3 \cdot BF_3$		96	87	R	13
15		7	TIG (ONL) C. D.T.		82	94	R	
16	774		LiCu(CN)Me·BF ₃		80	82	R	
17	Et		MeCuP(n-Bu) ₃ ·BF ₃		85	92	R	
18	4-3	^	LiCu(CN)Me·BF ₃		76	80	R	
19	n-octyl	6	MeCuP(n-Bu) ₃ ·BF ₃		90	98	s	
20	$Me \\ (CH3)2C=CH(CH2)2$	7	(CH ₃) ₂ C=CH(CH ₂) ₂ CuP(n-Bu) ₃ ·BF ₃		81 90	98	S	
21 22		6 7	$MeCuP(n-Bu)_3 \cdot BF_3$ $(CH_2 - CH)CuP(n-Bu)_3 \cdot BF_3$			92	$S_{\mathbf{p}}$	1 =
22 23	Me	•	$(CH_2 = CH)CuP(n-Bu)_3 \cdot BF_3$ $(CH_2 = CCH_3)CuP(n-Bu)_3 \cdot BF_3$		85 86	94 99	R R	15
3 4	CH_2 — $CH(CH_2)_2$		(On2—CON3)Our (n-Du)3·DF3		86 89	99 98	R R	
25	Me	8	n-PrCuP(n-Bu) ₃ ·BF ₃		98	95	S	18
26	1416	0	n-BuCuP(n-Bu) ₃ -BF ₃		89	97	s	10
27			$(CH_2 - CH)CuP(n-Bu)_3 \cdot BF_3$		80	98	R	
28			(CH ₃ CH=CH)CuP(n-Bu) ₃ ·BF ₃		84	94	R	
29	n-Pr		MeCuP(n-Bu) ₃ ·BF ₃		89	94	R	
30	n-Bu		1110041 (11 54) 3 51 3		93	97	R	
1	Me	9	(n-Bu) ₂ CuLi	-25	90	0	(-)	20
32		10	(·· = 4/4 · ·		81	50	Ì	
3		11			77	60	Š	
4		12			73	33	\boldsymbol{s}	
5				-78	71	45	\boldsymbol{s}	
6		13		-25	75	87	\boldsymbol{s}	
37				-78	74	95	\boldsymbol{s}	
8			$n ext{-BuCu/TMSI}$	-60	93	98	\boldsymbol{s}	21
39		14	CCl₃Li	-110	85	24	R	22
Ю			CCl₃MgCl		99	97	\boldsymbol{s}	
1	Me		EtCu-BF ₃	-80	90	99	R	23
2		15			84	99	\boldsymbol{s}	
3		14	i-PrCu·BF ₃		90	99	R	
4	— .	15	14 G PP		97	96	s	
5	Et	14	$MeCu \cdot BF_3$		86	98	\underline{s}	
16		15	:DC DE		88	99	R	
17		14	$i ext{-} ext{PrCu} ext{-} ext{BF}_3$		96	99	$S_{\mathbf{p}}$	
18	: D=	15	M ₀ C ₁₁ PF		94	99	R	
.9 60	i-Pr	14 15	$MeCu\cdot BF_3$		92	99	R	
		15 14	EtCu·BF ₃		93 76	99 99	S R	
51 52		14	Cu·BF ₃		81	99 97	R R	
3		15	Ourdr's		98	97 99	R S	
4	Me	15 14	(CH ₂ =CH)Cu·BF ₃		98 94	99 99	S S	
- T	1416	14 15	(OTTS OTT) OR DI. 3		81	99	R R	
		40			97	99	S	
5			PhCu·BF ₃				~	
5 6		14	PhCu·BF ₃			99	R	
5 6 7					94	99 99	R	
5 6 7 8 9		14	p-(CH₃)C ₆ H₄Li Ph₂CuLi	-50	94 85 66	99 88	R R	24a
55 66 57 58 59 60	Ph	14 15	p-(CH₃)C ₆ H₄Li Ph₂CuLi Me₂CuLi	-50 -30	94 85 66 71	99 88 84	R R R S	24a
55 66 57 58 59 50 51	Et	14 15	p-(CH₃)C₅H₄Li Ph₂CuLi Me₂CuLi Ph₂CuLi		94 85 66 71 63	99 88 84 72	R R R S R	24a
55 56 57 58 59 50 51 52	Et Me	14 15	p-(CH₃)C ₆ H₄Li Ph₂CuLi Me₂CuLi		94 85 66 71 63 91	99 88 84 72 72	R R R S R S	24a
55 56 57 58 59 50 51 52 53	Et	14 15	p-(CH ₃)C ₆ H ₄ Li Ph ₂ CuLi Me ₂ CuLi Ph ₂ CuLi (n-Bu) ₂ CuLi	-30	94 85 66 71 63 91 79	99 88 84 72 72 82	R R S R S S	24a
55 66 7 68 69 60 61 62 63 64	Et Me Ph	14 15	p-(CH ₃)C ₆ H ₄ Li Ph ₂ CuLi Me ₂ CuLi Ph ₂ CuLi (n-Bu) ₂ CuLi n-BuCu·BF ₃		94 85 66 71 63 91 79	99 88 84 72 72 82 25	R R R S R S S S	24a
55 66 67 68 69 60 61 62 63 64	Et Me	14 15	p-(CH ₃)C ₆ H ₄ Li Ph ₂ CuLi Me ₂ CuLi Ph ₂ CuLi (n-Bu) ₂ CuLi n-BuCu⋅BF ₃ n-BuMgBr	-30	94 85 66 71 63 91 79 33	99 88 84 72 72 82 25 38	R R R S R S S S S S	24a
55 56 57 58 59 50 51 52 53 53 54 55 56	Et Me Ph Ph	14 15	p-(CH ₃)C ₆ H ₄ Li Ph ₂ CuLi Me ₂ CuLi Ph ₂ CuLi (n-Bu) ₂ CuLi n-BuCu⋅BF ₃ n-BuMgBr n-BuLi	-30	94 85 66 71 63 91 79 33 15	99 88 84 72 72 82 25 38 68	R R R S R S S S S S R	24a
55 56 57 58 59 50 31 32 33 34 55 56 67	Et Me Ph Ph Et	14 15 16	p-(CH ₃)C ₆ H ₄ Li Ph ₂ CuLi Me ₂ CuLi Ph ₂ CuLi (n-Bu) ₂ CuLi n-BuCu·BF ₃ n-BuMgBr n-BuLi PhLi	-30 -78	94 85 66 71 63 91 79 33 15 20	99 88 84 72 72 82 25 38 68 82	R R R S R S S S S S R S	
55 56 57 58 59 60 61 62 63 64 65 66 67 68	Et Me Ph Ph	14 15	p-(CH ₃)C ₆ H ₄ Li Ph ₂ CuLi Me ₂ CuLi Ph ₂ CuLi (n-Bu) ₂ CuLi n-BuCu⋅BF ₃ n-BuMgBr n-BuLi	-30	94 85 66 71 63 91 79 33 15	99 88 84 72 72 82 25 38 68	R R R S R S S S S S R	24a 24b

Table 1. (Continued)

entry	R_1	R*OHª	RM	T, °C	% yield	% ee	R/S	ref
71		20		-30	55	34	R	
72		21		0	23	20	\boldsymbol{R}	
73		16	PhMgBr•CuI	-78	46	56	R	
74		18	J		52	86	R S S R	
75			$(H_2C=CH)MgBr\cdot CuI$		42	88	S	
76			EtMgBr-CuI		51	78	\tilde{R}	
77		19	PhMgBr·CuI		45	2	(-)	
78		20	g +		50	4	(-)	
79		21			45	6	(-)	
80	$(CH_2)_3Cl$	16	Ph₂CuLi	0	50	76	ì <i>Ŕ</i> ,2 <i>R</i>	24a
81	(0112)301	10	n-Bu₂CuLi	U	51	80	1R,2S	270
82			Me ₂ CuLi		57	76	1R,2S	
83	$(CH_2)_4I$		Ph ₂ CuLi		61	78	1R,2D	
00 04	Ph		(PhMe ₂ Si) ₂ CuLi ₂ CN	-78	82	20	1R,2R	05
84	Pn	5 7	(Phivie ₂ Si) ₂ Cull ₂ CiV	-10			R	25
85 86		1			74	8	ĸ	
86	3.6	8			77	88	ĸ	
87	Me				74	10	Š	
88	i-Pr				74	56	$R = \frac{R}{2}$	
89	$PhMe_{2}Si$		PhMgBr/CuCN		71	74	R R S R R	
90			MeMgI/Cu(OAc) ₂	-15	76	54	S	
ª R*OH	HO Me	HO D	HO O OH 3 4	Ph OH	OH 6		OH t-Bu O- 8	OH S=O N
= H, Methy 9 10	OH R ² yl, Phenyl, Benzyl, 1 11 12		X = X OH OH OH OH OH	2. N.	ОН "ОН 16	ОН ''''ОН	OH* (OH "-OH*
			OH* OH*	"^ОН*				
			20 21					

* hydroxyl group incorporated into the ester group

metallic reagents, the most common of which are organolithiums, ² Grignards, ² and cuprates. ³ The primary advantage of these reactions is that they allow the direct introduction of nonstabilized organic moieties into an organic structure with high chemo- and regions electivity starting from substrates which are generally readily available.

An important characteristic of these reactions is that they transform an sp² carbon into an sp³ carbon through addition of the R moiety to the β -position. Where R_1 ≠ R₂, this transformation can, in principle, occur enantioselectively.4 Enantioselective conjugate addition (referred to hereafter as ECA) can be achieved in two ways: (1) by reaction of an achiral reagent with a scalemic substrate,5 or (2) by reaction of a chiral reagent with a prochiral substrate. In cases where the starting substrate is chiral, the reaction can occur diastereoselectively. Diastereoselective conjugate addition (referred to hereafter as DCA) can lead to the synthesis of enantiomers if the original source of chirality is removed. Thus in cases where an achiral reagent reacts with a substrate in which Z is chiral, an unequal mixture of diastereomers will usually be produced by relative

asymmetric induction. Modification of Z to eliminate its stereogenic elements will produce an enantiomeric rather than diastereomeric mixture of isomers. Alternatively, one may react a prochiral substrate with a chiral reagent which induces ECA of an achiral moiety to the substrate. In this paper, we review synthetic methods which have been developed and reported for enantioselective carbon-carbon bond formation via conjugate addition of organometallic reagents to unsaturated organic substrates using either of the two strategies mentioned above. We will not review diastereo- or enantioselective conjugate addition involving stabilized carbon nucleophiles or non-carbon nucleophiles.4 We will also not review reactions involving conjugate addition to racemic substrates or reactions in which the objective is not to obtain enantiomerically pure products. The review is divided into three sections. The first section reviews synthetic methods developed for DCA to scalemic substances giving diastereomerically enriched products which are subsequently transformed to enantiomers. The second and third sections review chiral reagents developed to react enantioselectively with prochiral substrates.

II. Diastereoselective Conjugate Addition to Scalemic Substrates

A. α,β -Unsaturated Esters

One of the first methods developed for asymmetric conjugate addition involves the reaction of organocopper reagents with enantiomerically enriched α,β unsaturated esters (Table 1). These esters, derived from scalemic alcohols and α,β -unsaturated carboxylic acids, react to give diastereomeric products which upon hydrolysis yield enantiomers. In principle, this provides a simple and economical method of obtaining enantiomerically enriched products, especially if the alcohol used is readily available and recovered without racemization. It has been known for some time that copper-(I) salts catalyze the conjugate addition of Grignard reagents to α,β -unsaturated ketones⁶ and esters.⁷ In 1966, Kawana and Emoto reported the copper(I)catalyzed addition of phenylmagnesium bromide to the 1,2:5,6-di-O-isopropylidene- α -D-glucose ester of crotonic acid, 22 (eq 2).8,9 This reaction, followed by hydrolysis, gives (R)-(-)-3-phenylbutanoic acid (23) in 70% ee. Difficulties in reproducing these results have been reported.¹⁰ Reactions with similar substrates give product with ee's ranging from 10 to 74% (entries 1-8).

Yamamoto and Maruyama described the use of RCuBF₃·Et₂O for conjugate addition of R to α,β -unsaturated carbonyl compounds. Oppolzer and Löher used this method for DCA to (-)-8-phenylmenthol derived enoates (entries 9–13). For example, reaction of PhCu·BF₃ with (-)-8-phenylmenthyl crotonate (24) gives, after hydrolysis, (R)-23 in 76% yield and >99% ee (eq 3). Mediocre results were obtained with Z isomers

or with tri- and tetrasubstituted enoates. The high diastereoselectivity is believed to occur as a result of the ester assuming a conformation in which the carbonyl group, the ether oxygen, and the alkoxy C-H bond are coplanar and the carbonyl group and alkene are antiplanar. The phenyl group blocks one face of the alkene directing conjugate addition to the opposite face. MeCu-BF₃ reacts with significantly poorer diastereoselectivity. Subsequently, Oppolzer et al. demonstrated that other chiral enoates, in which the substrate is made using camphor-derived alcohols, 6 and 7, could be used as well in this reaction with varying degrees of diastereoselectivity (entries 15-24).^{13,14} Improved results were obtained by adding $P(n-Bu)_3$ to stabilize the organocopper reagent. These chiral auxiliaries and the improved method were used in the synthesis of (S)-citronellic acid (27) from 25 and 26

Scheme 1. Synthesis of Citronellic Acid via Diastereoselective Conjugate Addition to Scalemic Enostes

Scheme 2. Synthesis of California Red Scale Pheromone via Diastereoselective Conjugate Addition to Scalemic Enoates

Scheme 3. Synthesis of Vitamin E Side Chain via Diastereoselective Conjugate Addition to Scalemic Enoates

(Scheme 1)¹³ and California red scale pheromone 29 from 28 (Scheme 2).15 More than one chiral center can be established with this method. For example, the vitamin E side chain 31 was synthesized using this technology starting from (R)-citronellic acid. The new stereogenic center was established with 98% enantioselectivity (Scheme 3).16 Similarly, mycolipenic acid (33) was also synthesized (Scheme 4).¹⁷ Camphorsulfonamide esters, derived from alcohol 8, have also been used (entries 25-30)18 and are more efficient than the esters derived from alcohols 6 and 7. Chiral auxiliary 8 is readily obtained in two steps from camphor-10sulfonyl chloride making this protocol highly useful. This method was used to synthesize southern corn rootworm pheromone 35 (Scheme 5)18 and norpectinatone (36, Scheme 6).¹⁹

Scheme 4. Synthesis of Mycolipenic Acid via Diastereoselective Conjugate Addition to Scalemic Enoates

Scheme 5. Synthesis of Southern Corn Rootworm Pheromone via Diastereoselective Conjugate Addition to Scalemic Enoates

Scheme 6. Synthesis of Norpectinatone via Diastereoselective Conjugate Addition to Scalemic Enoates

Somfai, Tanner, and Olsson have performed similar experiments using chiral enoates derived from alcohols 9–13 (entries 31–37).²⁰ The chiral auxiliary is available in one step from camphor. In this case (n-Bu)₂CuLi was used as the reagent for conjugate addition. High yields and diastereoselectivites were attained with this reagent albeit in a limited number of cases. Bergdahl, Nilsson, and Olsson recently reported that TMSI/n-BuCu reacts with chiral ester 13 (entry 38) in high chemical yield and with high diastereoselectivity.²¹

Helmchen and Wegner also reported highly diastereoselective conjugate addition of organometallics to enoates derived from alcohols 14 and 15 (entries 39–58). Their initial report concerned the DCA of trichlo-

Figure 1.

romethyl magnesium chloride to the scalemic crotonate 37 derived from 14 (eq 4).²² They were able to optimize this reaction so as to obtain 3(S)-(trichloromethyl)butanoic acid (38) in 90% yield and 100% ee.

They expanded their study in order to see how well these types of esters perform in conjugate addition with nonhalogenated substituents.²³ Reaction of esters formed either from alcohol 14 or 15 and an alkyl or aryl copper reagent with BF₃ gave high diastereoselectivities in the conjugate addition. The two esters react to give products of opposite configuration allowing one access to both enantiomers of a desired product (eqs 5 and 6). Best results are obtained when the organocopper reagent formed using an alkyl lithium reagent is used in ether and when the organocopper reagent formed using a Grignard reagent is used in THF.

Recently, Fang, Suemune, and Sakai have reported the reaction of several organometallic reagents with chiral esters derived from α,β -unsaturated carboxylic acids and chiral diols 16-21 to give DCA with diastereoselectivities as high as 88% (entries 59-83).²⁴ The highest diastereoselectivities were attained using cuprates and chiral diol 16 or Grignards with catalytic CuI and chiral diol 18. The absolute configurations of the products obtained for these two cases were rationalized by assuming the transition states shown in Figure 1. In both cases, an alcohol oxygen and an ester carbonyl oxygen coordinate with lithium or magnesium to produce an intermediate complex. In this complex, one face of the olefin is more readily available to the copper portion of the reagent than is the other face.

Scheme 7. Diastereoselective Conjugate Addition to Scalemic Enoates Followed by Internal Enolate Alkylation

Table 2. Diastereoselective Conjugate Addition to Scalemic Binaphthyl Esters

entry	RM^a	solvent	% yield	% ee	R/S
1	Me ₂ CuLi	ether-toluene	84	87	R
2		ether	73	82	\boldsymbol{R}
3		toluene	77	74	R
4		ether-THF-toluene	72	63	R
5		ether-DME	26	11	R
6		THF	21	36	S^b
7		ether–THF	62	63	R
8	Et ₂ CuLi	ether-toluene	39	14	_
9	i-Pr ₂ CuLi		37	32	_
10	n-Bu ₂ CuLi		71	58	_
11	MeMgBr/ 5% CuI	ether-THF	73	48	S
12		ether-DME	31	49	s
13	EtMgBr/ 5% CuI	ether-THF	38	20	_b

 a 10 equiv of reagent were used. b (R)-Binaphthol was used to form the ester.

By performing these reactions with substrates halogenated at the terminal carbon, such as 39, cyclized products were obtained as a result of DCA followed by internal alkylation of the intermediate enolate to give 40 (Scheme 7).

Fleming and Kindon used chiral alcohols 5, 7, and 8 to form scalemic α,β -unsaturated esters which were then reacted with phenyldimethylsilyl cuprate reagents to give products with varying degrees of diastereomeric purity (eq 7).²⁵ They also reacted scalemic α,β -unsaturated amides and an oxazolidine to give similar products.

Fuji et al. were able to obtain enantiomerically enriched ketones of up to 87% ee by reacting the scalemic 1,1'-binaphthol monoester of cinnamic acid 41 with a large excess of lithium cuprates or with Grignard reagents and a copper(I) catalyst (Table 2).26 In this system, conjugate addition is followed by reaction with the ester group to give the β -substituted ketone. Interestingly, the two reagents gave products of opposite configuration. They rationalize the stereoselectivity observed by assuming a lithium chelate of the binaphthol oxygen followed by addition of the cuprate (Figure 2). They also suggest that the ortho hydrogen blocks

Figure 2.

the back side of the enoate system. An alternative complex is suggested to form with Grignard reagents which leads to the ketone of opposite configuration.

Another approach to DCA is to use scalemic esters in which the stereogenic elements are located in some part of the enoate other than the ester group. Alexakis et al. reported high diastereoselectivity when cinnamates bearing a scalemic oxazolidine or imidazolidine ring undergo DCA with achiral organocuprate reagents to give conjugate addition product (Table 3).27 Their first attempts with analogous cyclic chiral acetals 42 yielded 43 with low de's (eq 8). Diastereoselectivity improves dramatically when one or two of the oxygens in the ring are replaced with nitrogen. Hydrolysis of the chiral rings yields the corresponding enantiomerically enriched aldehyde esters. Best results are obtained with a substrate containing an imidazolidine ring prepared from (R,R)-(-)-1,2-bis(methylamino)cyclohexane (entries 8-11).

$$R = Me Ph, CH2OMe$$

$$1. LiCuMe2$$

$$2. H3O+$$

$$1. LiCuMe2$$

$$Me$$

$$15-20\% ee$$

$$42$$

$$43$$

$$(8)$$

Asami and Mukaiyama have used a similar approach with scalemic vinyl aminals (Table 3, entries 12–16).²⁸ They suggest that complexation of the Grignard with the bridge-head nitrogen directs the reaction (Figure 3).

Scolastico and co-workers have examined the reaction of cuprates with α,β -unsaturated aldehydes, ketones, and esters in which a norephedrine derived oxazolidine is substituted at the 4-position (Table 3, entries 17–21).²⁹ The starting materials are formed by reacting an α,β -unsaturated aldehyde with norephedrine followed by benzyl chloroformate. A 95:5 mixture of diastereomeric oxazolidines is formed. With aldehydes and ketones, yields are improved by adding TMSCl.

B. α,β -Unsaturated Amides

Mukaiyama and Iwasawa were able to obtain β , β -disubstituted carboxylic acids in good overall yield and

Table 3. Diastereoselective Conjugate Addition of Cuprate Reagents to α,β -Unsaturated Esters Substituted with Scalemic Acetals, Aminals, and Oxazolidines

entry	substrate	cuprate	% yield	% ee	R/S	ref
1	COOEt	LiCuMe ₂	51	55	R	27
	Ph Me R = O N-Me					
2		LiCu(n-Bu) ₂	68	62 98	R S S	
3		$LiCuPh_2$ $LiCu(CH=CHCH_2CH_3)_2$	73 73	98 82	S S	
4 5	Ph Me	LiCuMe ₂	43	93	Š	
·	R = ON-Me				-	
6 7	3	LiCu(n-Bu) ₂	65	70	S R	
7	$R = \underbrace{\begin{array}{c} Ph \\ Me - N \\ H \end{array}}_{N-Me}$	${f LiCuMe_2}$	57	78	R	
8	R = N-N-N-Me		85	94	\boldsymbol{S}	
9	н	${ m LiCu}(n ext{-Bu})_2$	90	95	Q	
10		LiCuPh ₂	84	96	R R	
11		LiCu(CH—CHCH ₂ CH ₃) ₂	80	90	S R R R	
12	H N-Ph COOMe	EtMgBr, CuI	73	93	R	28
13	333	n-PrMgBr, CuI	75	89	R R R R	
14 15		n-BuMgBr, CuI n-C ₅ H ₁₁ MgBr, CuI	83 65	93 92	R D	
16		PhCH ₂ MgBr, CuI	38	35	R R	
17	MeOOC CBZ N Me	${ m LiCuMe_2}$	70	90	Š	29
18	•••	LiCuMe ₂ /TMSCl	72	90	S	
19		LiCu(n-Bu) ₂	70	90	S	
20 21		$\begin{array}{c} \text{LiCu}(\text{CHCH}_2)_2\\ \text{LiCu}(\text{CH}_2\text{CHCH}_2)_2 \end{array}$	75 54	90 78	S S R S	
<u></u>		1104(0112011-0112)2	UT	10		

Figure 3.

high enantioselectivity by reaction of Grignard reagents with α,β -unsaturated amides derived from L-ephedrine (Table 4). Initial deprotonation of the alcohol by the Grignard reagent forms an intermediate chelating magnesium complex (Figure 4). This complex is believed to help direct the approach of the subsequent Grignard to the relatively unencumbered side of the complex. Enantioselectivities as high as 99% are obtained in the final product. This method was used in the synthesis of (-)-malyngolide (45) from 44 (Scheme 8). In the synthesis of (-)-malyngolide (45) from 44 (Scheme 8).

Mukaiyama et al. carried out similar transformations by forming scalemic oxazepines and reacting them with Grignard reagents in the presence of nickel catalysts (Table 5).³² Conjugate addition occurs to the sterically unencumbered face of the olefin (Figure 5). This method was used in the synthesis of indolmycin³³ (Scheme 9).

Table 4. Diastereoselective Conjugate Addition to α,β -Unsaturated Amides of Ephedrine

entry	R	R_1M	solvent	% yield	% ee	config
1	Me	n-BuMgBr	ether	53	85	S
2		PhMgBr		55	95	R
3		EtMgBr		58	98	\boldsymbol{s}
4		n-C ₆ H ₁₃ MgBr		63	91	s
5	Ph	n-BuMgBr		63	99	\boldsymbol{s}
6	$\mathbf{E}\mathbf{t}$			44	79	\boldsymbol{s}
7	n-Bu	PhMgBr		54	99	R
8				61	99	\boldsymbol{R}
9	Ph	EtMgBr		47	98	s
10	$\mathbf{E}\mathbf{t}$	PhMgBr		62	93	R
11	Me	n-BuMgBr	Me_2O	52	19	\boldsymbol{s}
12			THF	66	22	\boldsymbol{s}
13			toluene	57	48	\boldsymbol{s}
14		<i>n-</i> BuLi	ether	58	28	\boldsymbol{s}
15		n-BuMgCl		73	72	s
16		n-BuMgI		71	34	\boldsymbol{s}

Several studies by Soai and co-workers have also focused on DCA of organolithium and organomagnesium reagents to scalemic α,β -unsaturated amides. One study involves DCA of Grignard reagents to scalemic α,β -unsaturated amido alcohols derived from crotonoic

Figure 4.

Scheme 8. Enantioselective Synthesis of (-)-Malyngolide

Table 5. Diastereomeric Conjugate Addition to Scalemic Alkylidene Oxazapinediones

$$R_1$$
 R_2 R_2 R_3 R_4 R_2 R_4 R_5 R_6 R_6

entry	R_1	R_2	RM	% yield	% ee	R/S
1	H	Ph	n-BuMgBr	85	88	R
2			$n ext{-BuMgBr/NiCl}_2$	92	99	R
$\frac{2}{3}$			$n ext{-BuMgBr/ZnCl}_2$	76	85	R
4			$n ext{-BuMgBr/FeCl}_3$	70	60	R
5			PhCH ₂ MgCl	75	9	R
6			PhCH ₂ MgCl	78	7	R
7			PhCH ₂ MgCl/ZnCl ₂	85	15	R
8			PhCH ₂ MgCl/FeCl ₃	62	18	R
9			PhCH ₂ MgCl	68	73	R
10			PhCH ₂ MgCl/NiCl ₂	76	75	R
11			PhCH ₂ MgCl/CuI	64	71	R
12			EtMgBr	94	99	R
13	Ph	H	MeMgBr	85	92	\boldsymbol{S}
14			EtMgBr	94	>99	S S S
15			n-BuMgBr	92	93	S
16	Me		i-PrMgBr	55	82	R
17			n-BuMgBr	82	89	\boldsymbol{S}
18			PhMgBr	88	89	R
19	$\mathbf{E}\mathbf{t}$		n-BuMgBr	78	62	S
20			PhMgBr	84	99	R
21	i-Pr		MeMgBr	73	93	\boldsymbol{s}
22	n-Bu		EtMgBr	77	58	R
23	H	Ph	(n-Bu)₂CuLi	76	>99	S S S
24	Ph	Н		64	99	\boldsymbol{s}
25	Me			70	90	S
26			Ph ₂ CuLi	79	66	R
27	Et		(n-Bu) ₂ CuLi	73	56	S
28	_		Ph_2CuLi	66	65	R
29	n-Bu			66	67	R

and cinnamic acids and derivatives of proline (Table 6).^{34,35} Conjugate addition followed by hydrolysis of the 1,4-adducts yields enantiomerically enriched 3-substituted carboxylic acids with ee's ≤100% and recovery of the chiral auxiliary. Best results were obtained using toluene as the solvent and alkyl magnesium bromides as the organometallic reagents. The addition of a tertiary amine, especially DBU, improves

Figure 5.

Scheme 9. Enantioselective Synthesis of Indolmycin via Diastereoselective Conjugate Addition

Table 6. Diastereoselective Conjugate Addition of Grignard Reagents to α,β -Unsaturated Amides Derived from (S)-2-(1-Hydroxy-1-methylethyl)pyrrolidine

	sub-		tertiary	_	%	%	
entry	strate	R_4	amine	solvent	yield	ee	ref
1	50	n-Bu	DBU	toluene	49	100	34
2					45	96	
3			Et_3N		23	75	
4		$\mathbf{E}\mathbf{t}$	DBU		51	88	
5	53	n-Bu			45	60	
6		Et			21	53	
7		Ph			47	67	
8	50	n-Bu	-	THF	33	16	35
9			-	toluene	52	37	
10			DBU		81	88	
11				THF	39	89	
12				ether	62	69	
13				THF	27	50	
14			TMEDA		30	67	
15			(-)-sparteine		25	69	
16			$\mathbf{D}\mathbf{B}\mathbf{U}$	toluene	60	74	
17		Et			66	82	
18		Me			22	64	
19	51	<i>n-</i> Bu			29	84	
20	50			THF	21	23	
21	52		_	toluene	73	14	
22			DBU		23	4	
23	53	_			13	50	
24		Et			27	69	
25		n-hexyl			23	68	
26					33	55	
27			TMEDA		22	66	

the diastereoselectivity. Stereoselectivity virtually disappears when the hydroxyl group is converted to a methyl ether. This procedure was used to prepare (S)-citronellol in 63% ee.

In a similar study, Soai and Ookawa investigated the addition of organolithium reagents to N-cinnamoyl- and

Table 7. Conjugate Addition of Organolithium Reagents to N-Cinnamoyl- and N-Crotonoylproline

entry	R_1	reagent	additive	equiv of additive	% yield	% ee	R/S
1	Ph	n-BuLi	_	-	24	21	S
2			hexamethylene- tetramine	4.5	30	3	R
3			Me_3N		48	48	R
4			Et_3N		36	49	R
5			TMEDA		29	51	R
6			(−)-sparteine		41	57	R
7			N,N-dimethyl- aniline		24	24	\boldsymbol{S}
8			proton sponge		40	24	R
9			t-BuOK		35	6	S S
10			12-crown-4		44	8	s
11			DBU	0.5	43	37	R
12				1.0	55	60	R
13				4.5	48	55	R
14				9.0	51	50	R
15				1.0 (B)	34	29	s
16				1.0 (C)	35	57	S R
17			TMEDA	4.5 (B)	43	39	SSSS
18				4.5 (C)	25	38	s
19			sparteine	4.5 (B)	26	16	s
20		MeLi	DBU	1.0 (A)	36	11	S
21				1.0 (B)	10	14	R
22	Me			1.0 (A)	60	37	R
23				1.0 (B)	47	10	S
24		PhLi		1.0 (A)	29	14	\boldsymbol{S}
25				1.0 (B)	33	8	R

^a Order of addition: (A) amide, additive, n-BuLi; (B) amide, n-BuLi, additive; and (C) amide, mixture of n-BuLi and additive.

N-crotonoylproline (Table 7).36 They discovered again that both synthetic yields and diastereoselectivities increase with the addition of tertiary amines. They also reported that the order of addition of reagents determines the configuration of the predominant isomer. Addition of the amine to the reaction mixture containing the substrate followed by the organolithium reagent produces the R isomer in diastereoselectivities of $\leq 60\%$ (entries 20, 22, and 24). Addition of the lithium reagent before the amine or addition of a mixture of the amine and the lithium reagent yields the S isomer with lower diastereoselectivities (entries 21, 23, and 25). Acidic hydrolysis subsequently yields 3-substituted carboxylic acids with enantiomeric excesses of up to 60%. Tomioka, Suenaga, and Koga reported a study in which a scalemic γ -butyrolactam is used as a chiral auxiliary to form 3-substituted carboxylic acids (Table 8).37 Conjugate addition occurs to the α face to give the scalemic product.

C. N-Enovi Sultams

Similar to their work with chiral enoates, Oppolzer et al. have reported the DCA of organocopper and Grignard reagents to N-enoyl sultams readily derived from (+)- and (-)-camphor-10-sulfonyl chloride (Table 9).38,39 The primary advantages of working with sultams are that the starting material and product are conveniently purified by recrystallization, the stereochemistry of the product is readily discerned and the sultam group is easily removed under mild conditions. The first application of this methodology was the DCA of phosphine-stabilized alkenyl- and alkylcopper reagents to

Table 8. Diastereoselective Conjugate Addition to Scalemic Imides

Figure 6.

 $N-[\alpha-(\text{silyl})]$ sultams with up to 96% de (entries 1-10). The reaction also works well with silylcopper reagents (entry 11). Subsequent removal of the sultam group yields the enantiomerically enriched carboxylic acid. The steric course of the reaction is believed to occur by formation of the complex shown in Figure 6 followed by addition of the organic group to the face of the olefin shown. Addition of lithium cuprate reagents to these substrates also occurs readily with good diastereoselectivity.

Oppolzer et al. have also described the DCA of methyl, vinyl, and aryl organometallic reagents to (E)-Nenoyl sultams, followed by asymmetric protonation or alkylation of the enolate which gives a product with two new stereogenic centers (Table 10).40,41 This method has been used in the synthesis of β -necrodol (49) from 47 (Scheme 10).42

D. 2-Cycloalkenones

One of the first effective protocols for the synthesis of enantiomerically enriched 3-substituted cyclic ketones was that developed by Posner and co-workers.⁴³ According to this method, 2-p-(tolylsulfinyl)-2-cycloalkenones, readily synthesized in two steps from 2-bromocycloalkenones, are treated with one of several organometallic reagents which react to give conjugate addition (Table 11). Cuprates react sluggishly. Reaction of (S)-2-(p-tolylsulfinyl)-2-cyclopentenone with R_2Mg , in the absence of other salts, gives the S product in high de. A reversal in selectivity was observed when ZnBr₂ was added to the sulfinyl ketone followed by addition of Grignard reagents. Reaction with (i-PrO)₃TiCl/RLi gave high de's. Improvements in de's

Table 9. Diastereoselective Conjugate Addition to N-Enoyl Sultams

entry	\mathbf{R}_1	RM	Lewis acid	% de	$\%$ de a	% yield°	ref
1	SiPhMe ₂	CH ₂ —CHCu·P(n-Bu) ₃	BF ₃ ·OEt ₂	44	94	60	38
2			$EtAlCl_2$	90	96	57	
3		(Z)-CH ₃ CH=CHCu-P $(n$ -Bu) ₃	_	96	98	65	
4		(E)-CH ₃ CH=CHCu·P $(n$ -Bu) ₃		96	96	67	
5		$MeCu\cdot P(n-Bu)_3$		86	93	61	
6		$EtCu\cdot P(n-Bu)_3$		86	92	62	
7		n -PrCu·P(n -Bu) $_3$		88	96	57	
8		$i\text{-PrCu-P}(n\text{-Bu})_3$		86	94	64	
9		n -BuCu·P $(n$ -Bu $)_3$		92	97	61	
10		$PhCu\cdot P(n-Bu)_3$		94	100	86	
11	Ph	$SiPhMe_2Cu\cdot P(n-Bu)_3$		80	97	43	
12	Me	EtMgCl	_	89		80	39
13		n-PrMgCl	-	85		90	
14		i-PrMgCl	_	72		92	
15		$n ext{-} ext{BuMgCl}$	_	86		78	
16		n-C ₆ H ₁₃ MgCl	-	84		73	
17		n-C ₈ H ₁₇ MgCl	_	82		81	
18	$\mathbf{E}\mathbf{t}$	n-BuMgCl	_	89		89	

Table 10. Diastereoselective Conjugate Addition to N-Enoyl Sultams and Subsequent Treatment of the Enolate with an Electrophile

entry	R ₃ M	R_1	R_2	E-X	$A/B/C/D^a$	% yield ^b	% purity	config	ref
1	n-BuMgCl	Н	Me	Me-I	87:0:5:9	48	98	2R,3R	39
2	-		Et		88:0:3:9	36	98	2R,3R	
3	EtMgCl	Me	Me	н-он	99:0:1:0	81	100	2R,3R	
4	BuMgCl			H-NH ₃ +Cl ⁻	98:0:1:1	66	100	2R,3R	
5	PhMgCl				97:0:2:1	48	99	2R,3S	
6	$n ext{-}\mathbf{BuMgCl}$		Et		97:0:3:0	78	100	2R,3R	
7	EtMgCl		Bu		97:0:1:2	60	100	2R,3S	
8	n-BuMgCl/CuCl		Me		0:2:86:12	67	98	2S, 3S	40
9	n-BuMgCl/CuCN		Me		0:2:84:14	-	_	2S, 3S	
10	EtMgCl/CuCl		Me		0:2:85:12	66	99	2S,3S	
11	n-BuMgCl/CuCl		${f Et}$		0:0:92:8	71	100	2S,3S	
12	EtMgCl/CuCl		Bu		0:0:97:3	63	99	2S,3R	
13	n-BuMgCl/CuCl		$(t-Bu)Me_2SiOCH_2$		0:0:97:3	56	99	2S, 3S	
14	n-BuMgCl		$(t-Bu)Me_2SiOCH_2$			83	100	2R,3R	
15	MeMgCl/CuCl		<i>n-</i> Bu		8:11: 69 :13	_	-	2S,3R	
16	PhMgCl/CuCl		Me		3:3:72:22	_	_	2S,3R	
17	Me ₂ CuLi		Et		15:85:0:0			2S,3R	41
18					9:91:0:0			2S,3R	
19			n-Bu		5:89:3:4			2S,3S	
20			Ph		6:90:(4)			2S,3R	
21	Ph_2CuLi		Me		11:83:0:6			$2S,\!3S$	
22	(CH ₂ =CH) ₂ CuLi				12:86:0:1				

^a Ratio of the diastereomeric products before purification. ^b Yield of the major diastereomer after purification. ^c Purity of the major diastereomer after purification.

were obtained by switching from the p-tolylsulfinyl to p-anisylsulfinyl ketones.⁴⁴ Posner and Frye also synthesized 3-substituted cyclohexanones (65–96% enantiomeric purity) from (S)-2-(p-tolylsulfinyl)-2-cyclohexenone and various organometallic reagents.⁴⁵

Normally the 2-(arylsulfinyl)-2-cycloalkenones exist in a conformation in which the sulfinyl sulfur-oxygen bond dipole and the carbonyl carbon-oxygen bond dipole are anti to one another. Reaction of diorganomagnesium compounds with these substrates in the absence of metal salts and in THF results in highly

stereoselective conjugate addition as shown (Figure 7). Addition of metal salts such as $ZnBr_2$ results in a reversal of the diastereoselectivity because of chelation with the sulfinyl and ketone oxygens which results in blocking the backside of the enone system. Furthermore, Posner and co-workers found that one generally obtains higher ee's if 2,5-dimethyltetrahydrofuran (DMTHF) is used as the solvent instead of THF. The diminished complexing ability of DMTHF to the metal ion allows more effective metal ion chelation by the bidentate β -keto sulfoxide, which in turn results in

Scheme 10. Enantioselective Synthesis of β -Necrodol

Table 11. Diastereoselective Conjugate Addition of Organometallics to (S)-2-(Arylsulfinyl)-2-cycloalkenones

entry	n	Ar	RM	solvent	% yield	% ee	R/ S
1	5	p-Tol	Me ₂ Mg	THF	60	97	S
2			Et ₂ Mg		81	81	S
3			Ph_2Mg		72	97	S
4	6		Me ₂ Mg		50	79	s
5	5		MeMgCl		91	>98	R
6			$ZnBr_2/EtMgCl$		84	80	R
7			(i-OPr) ₃ TiEt		67	>98	R
8			ZnBr ₂ /t-BuMgCl		98	86	R
9			ZnBr ₂ /CH ₂ =CHMgBr		75	99	R
10			ZnBr ₂ /PhMgCl		70	92	R
11			6-MeONaphthMgBr		90	>98	R
12			ZnBr ₂ /TolMgBr			58	R
13		p-An				69	R
14		p-Tol		DMTHF	74	86	R
15		F	ZnBr ₂ /Me ₃ CCH ₂ MgCl	THF		17	R
16				DMTHF	81	77	R
17	6		ZnBr ₂ /CH ₂ =CHMgBr		74	65	R
18	·		(i-PrO) ₃ TiCl/MeLi	THF		87	R
19			(* 110)31101,111021	DMTHF	83	96	R
20			(i-PrO) ₃ TiCl/PhLi	THF	00	43	R
21			(* 210/31101/111111	DMTHF	58	93	R
22			$(i ext{-PrO})_3 ext{TiCl/EtMgBr}$	THE	65	90	R

Scheme 11. Synthesis of Equinelin via Diastereoselective Conjugate Addition

higher selectivities. Posner and Frye obtained the best results using $RTi(O-i-Pr)_3$ in DMTHF or $ZnBr_2/RMgX$ in DMTHF.

Using this methodology, Posner and co-workers were able to stereoselectively synthesize several interesting chiral substrates including equilenin (51; Scheme 11), (-)-podorhizon (53; eq 9), and (+)-A factor (54), a potent

Figure 7.

autoregulating factor essential for streptomycin production (eq 10).

Saengchantava and Wallace used this approach to synthesize enantiomerically enriched 2-substituted chroman-4-ones (eq 11).⁴⁶ DCA of lithium dimethyl cuprate to (S)-3-(p-tolylsulfinyl)chromone (55) gave, after chromatographic purification and removal of the sulfoxide group with aluminum amalgam, (S)-2-methychroman-4-one (56) in 88% ee.

Schultz and Harrington recently reported a procedure for the synthesis of enantiomerically enriched 3-substituted cyclohexanones via DCA to scalemic 2-(aminocarbonyl)-2-cyclohexenone 58.47 Substrate 58 is readily obtained by Birch reduction of amide 57, followed by acid-catalyzed hydrolysis and olefin migration (eq 12). DCA with various organometallic reagents gave products 59 with diastereoselectivities ranging from 0 to 94% (Table 12). Treatment of the product with hydroxyl amine results in removal of the chiral auxiliary to give the (S)-3-methyl cyclohexanone.

Smith, Dunlap, and Sulikowski reported the conjugate addition of Gilman's reagent to 5(R)-methoxy-2-cyclopentenone followed by hydrolysis and removal of the methoxy group with samarium iodide to give scalemic 3-methylcyclopentanone (eq 13).⁴⁸ Though not developed as a method to obtain enantiomerically enriched products, such is possible, if one has access to scalemic 5-methoxy-2-cyclopentenone. Other cuprates were found to react with this and other racemic cyclopentenones with moderate to high diastereoselectivities.

Table 12. Diastereoselective Conjugate Addition to 2-(Aminocarbonyl)-2-Cyclohexenone 55

entry	RM	RM, equiv	ZnBr ₂ , equiv	TMSCl, equiv	% yield	% de
1	MeMgCl	1.5			8	0
2	· ·	3.6	1.0	5.0	80	67
3	MeLi	4.0	1.2		89	60
4	EtMgBr	3.6	1.2		54	94
5	n-PrMgCl	3.6	1.2		57	94
6	CH ₂ =CHCH ₂ MgBr	3.6	1.2		19	95
7		1.2	а	5.0	36	>94
8	CH ₂ =CHMgBr	3.6	1.2		73	>94
9	PhMgBr	1.5	0		37	0
10	•	2.0	b	5.0	99	67
11		3.6	1.2		49	94
a 10	% CuBr ₂ . b 1.0 equiv	CuBr.				

MeO
$$\frac{1 \cdot Me_2CuLi}{2 \cdot H_3O^+}$$

MeO $\frac{SmI_2}{69\%}$

76%

>98% ee

Jung and Lew recently reported DCA of several cuprate reagents to scalemic enone ketals with low to moderate diastereoselectivity (Table 13).⁴⁹

Vemura and co-workers have explored the conjugate addition of organocopper reagents with scalemic (omethoxyphenyl 1-propenyl ketone)chromium complex. For Reaction of the (R)-chromium complex 60 with ((S)-2-methyl-3-tert-butoxypropyl)copper-boron trifluoride (61) gives exclusively conjugate addition with 99:1 selectivity, yielding 62 (eq 14). Reaction of the same organocopper reagent with the S enantiomer of the chromium complex gives the product in a ratio of 66:34. Thus, the first reaction represents a matched case and the latter a mismatched case in this reaction manifesting double diastereoselectivity. This protocol is somewhat limited because of the need to resolve the chromium complex.

$$Cr(CO)_{3} \xrightarrow{OMe} OBu^{1}$$

$$Cr(CO)_{3} \xrightarrow{O} OBu^{1}$$

$$Cr(CO)_{3} \xrightarrow{OMe} OBu^{1}$$

$$Cr(CO)_{3} \xrightarrow{OMe} OBu^{1}$$

$$Cr(CO)_{4} \xrightarrow{OMe} OBu^{1}$$

$$Cr(CO)_{5} \xrightarrow{OMe} OBu^{1}$$

E. Vinyl Acetals, Oxazolidines, and Imidazolidines

Another approach to stereoselective conjugate addition is to react an organometallic reagent with α,β -unsaturated aldehydes masked as acetals, oxazolidines,

Table 13. Diastereoselective Conjugate Addition to Scalemic Ketal Enones

$$\begin{array}{c} R \\ R \\ O \\ O \\ \end{array} \begin{array}{c} 1) \ R^1_n \text{Cu(X)Li}_m, \text{ ether, -78°C} \\ 2) \ \text{NaOMe, MeOH, 25°C} \end{array} \begin{array}{c} R \\ R \\ Me \\ O \\ \end{array} \begin{array}{c} R^1 \\ Me \\ O \\ \end{array}$$

		% de						
reagent	R = Me	R = Ph	R = CH ₂ OBn	$R = MeOC(Me)_2$				
Me ₂ CuLi Me ₂ Cu(CN)Li ₂ (n-Bu) ₃ PMeCuLi (Th)MeCu(CN)Li ₂ PhCH ₂ (CN)ZnBr	28 26 25	22 2	4 20 20 20 24	24 22 12				

or imidazolidines derived from scalemic diols, amino alcohols, or diamines, respectively. Alexakis et al. reported the DCA of achiral organocopper reagents to chiral α,β -unsaturated acetals (Table 14, entries 1–15).⁵¹ They first prepared a cyclic chiral acetal from the aldehyde and a chiral diol usually having a C_2 axis of symmetry. Aryl-, alkenyl-, or vinylcopper with BF₃·Et₂O react with the vinylic acetals in an anti S_N2' reaction that results in diastereoselective cleavage of the chiral acetal ring. The resulting enol ethers were easily hydrolyzed to enantiomerically enriched β -substituted aldehydes with recovery of the chiral diol. They obtained the highest diastereoselectivity (95%) with PhCu, BF₃, and P $(n-Bu)_3$ as a copper(I) ligand. Conjugate addition to chiral ketals was also performed with some success (Table 15). This methodology was used to synthesize the California red scale pheromone 29 (Scheme 12).

Yamamoto and co-workers have reported DCA of Me₃Al to vinyl acetals derived from α,β -unsaturated aldehydes and ketones and N,N,N^1,N^1 -tetramethyltar-tramide with excellent diastereoselectivity (Table 14, entries 17–21).⁵² This method was used to synthesize the side chain of vitamin E (entry 21).

Reaction of Grignard reagents and a Cu(I) catalyst with scalemic propargylic acetals gave allenes with up to 85% de (Table 16).

Berlan et al. have reported DCA of organocuprate reagents to α,β -unsaturated oxazolidines with de's of up to 85% (Table 17).⁵³ The enantioselectivity of this reaction is highly dependent on solvent and salts present in solution. A number of mechanistic studies have been carried out which suggest the reaction occurs by 1,2-addition to the double bond rather than by S_N2′ addition.⁵⁴ Formation of more than one diastereomer of the oxazolidine from ephedrine and various α,β -unsaturated aldehydes can often be problematic leading to difficulties in implementing this method.⁵⁵

F. Vinyl and Aryl Oxazolines

Another highly effective means of DCA, reported by Meyers, Whitten, and Smith, 56 involves the addition of organolithiums to vinyl oxazolines giving, after hydrolysis, β , β -disubstituted propionic acids (Table 18). Either enantiomer of the product can be obtained by switching R and R₁. The reaction is believed to involve, first, complexation of the organolithium reagent to the nitrogen and methoxy group of the oxazoline, followed

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \end{array} = Z \quad \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array}$$

entry	R_1	\mathbf{Z}^a	reag	gent	% yield	% ee	R/S	ref
1	Me	63	PhCuSMe ₂		70	76	S	51
2			$PhCuP(n-Bu)_3$		75	95	S	
3	(<i>Z</i>)-Me		PhCu		75	69	S R S	
4	n-Pr		$\mathbf{PhCuPBu}_3$		71	91	S	
5	Me	64	$PhCuSMe_2$		70	77	S S R R	
6 7		65			50	76	\boldsymbol{s}	
7		ent-66			67	35	\boldsymbol{R}	
8		ent-67			70	29		
9		68	(Me ₂ C=CH) ₂ Cul	Li	69	24	ND	
10			(Me ₂ C=CH)Cu-S	SMe ₂	72	67	ND	
11					70	85	ND	
12			$[CH_2 - C(n \cdot C_5H_1)]$	₁)] ₂ CuLi	75	50	ND	
13			$[CH_2=C(n-C_5H_1)]$	$_{1})]_{2}CuLi\cdot SMe_{2}$	71	60	ND	
14			$CH_2 = C(n-C_5H_{11})$	$(CuP(n-Bu)_3)$	69	85	ND	
15			(Z) - $(n$ - $C_6H_{13})HC$ =	$-CHCuSMe_2$	70	73	ND	
16				$=$ CHCuP(n -Bu) $_3$	68	85	ND	
17	n-Pr	69	Me ₃ Al		NG	96	S	52
18	Me		$(n-Pr)_3Al$		51	93	R	
19	Ph		Me ₃ Al		77	98	\boldsymbol{R}	
20	4-methyl-3-pentenyl	70			61	96	S R R R	
21	(R)-4,8-dimethylnonyl				55	96	R	
a Z =	. /		OH SE		γ	Ŷ		
	HO HO	H O COOE	HO CH2SEt H	OT HOTO		H O NM	le ₂	
	λο ~ λο ~ λο ~ ^b	n ≻,o →coo⊧	CH'SE' X	0 40 40	MMe ₂	X,O-Y-NM	le ₂	
	•		•		Ŏ	Ö		
	63 64 65	66	67 6	8 69	70	71		

Table 15. Diastereoselective Conjugate Addition of Organometallic Reagents to Scalemic Ketals

entry	substrate	reagent	% yield	% ee	R/S	ref
1	**	LiCuMe ₂ , BF ₃ ·OEt ₂	71	26	S	51
2	Mes SMe			48	R	
3	Me ₂ N NMe ₂	AlMe ₃ /toluene	97	77	R	52
4	MeN NMe		84	72	S	
5 6	Me ₂ N NMe ₂		74 84	70 54	S R	

Scheme 12. Synthesis of California Red Scale Pheromone via Diastereoselective Conjugate Addition to Scalemic Vinyl Acetals

Table 16. Copper-Catalyzed Diastereoselective Conjugate Addition of Grignard Reagents to Scalemic Propargylic Acetals

entry	\mathbf{Z}^a	\mathbf{R}	CuX	% de
1	63	Me	CuBr	56
2		<i>n-</i> Bu		70
3		t-Bu		100
4		Ph		45
5	64	Me		28
6	65			59
7	66		CuBr•2P(OEt) ₃	78
8	67		CuBr	30
9	68			74
10	69			66
11			$CuBr \cdot 2P(OEt)_3$	85

^a See Table 14 for structures.

by nucleophilic addition of the R_1 group to the top face of the olefin (Figure 8). The phenyl group on the oxazoline apparently has little or no effect on the stereochemical outcome of the reaction.⁵⁷ Stabilized carbanions add in a conjugate fashion but with little or no diastereoselectivity. Methyl lithium is also nonstereoselective in its addition to vinyl oxazolines. More recently, vinyl oxazolines, in which the oxazoline is

derived from tert-leucinol, have been used in this reaction and have been found to be highly effective giving products in greater than 94% ee.58 In addition, mild procedures have been developed for removal of the oxazoline group facilitating recovery of the desired product.

This method has been used in the synthesis of artumerone (76; Scheme 13)⁵⁹ and in carbomycins 78 and **79** (Scheme 14).⁶⁰

Treatment of the intermediate azaenolate with MeI results in α -alkylation with high diastereomeric excess and produces α, β, β -trisubstituted propionic acids (Scheme 15).

An interesting variation of this reaction was developed for the synthesis of scalemic biaryls (Table 19). Reaction of naphthyl Grignards with scalemic (1-methoxy-2-naphthyl)oxazolines results in displacement of the methoxy group and formation of the binaphthyl (eq 15).61

Table 17. Diastereoselective Conjugate Addition of Cuprate Reagents to Scalemic α,β-Unsaturated Oxazolidines²

entry	$\mathbf{R_1}$	R	M	solvent	salt	R/S	% €
1	Ph	Me	Li	ether	_	S	40
2 3				hexane		R	80
3		C_2H_5		ether		\boldsymbol{s}	15
4		- •		hexane		R	10
5		C_4H_9		ether		\overline{S}	20
6		- 1 - 0		ether, hexane, THF		\dot{s}	12
4 5 6 7 8 9				ether	LiBr	\tilde{s}	59
8		$t\text{-}\mathrm{C_4H_9}$		ether, hexane		\widetilde{R}	48
9		CH — CH_2		ether		R	25
10				ether, hexane, THF		R	35
11	$o ext{-}\mathrm{ClPh}$	Me		ether		\vec{R}	39
12	· • • • • • • • • • • • • • • • • • • •			hexane		$\stackrel{\sim}{R}$	81
13	$o ext{-}\mathbf{MeOPh}$			ether		S	7
14	0 1/1001 11			hexane		\widetilde{R}	70
15	1-naphthyl			ether		Š	35
16	1 11up11011,1			hexane		\widetilde{R}	55
17	Me	$\mathrm{C_2H_5}$		ether		R	5
18	1,10	02220		001101	LiBr	Ŝ	54
19		C_3H_7			-	\tilde{R}	7
20		03227			LiBr	\ddot{s}	40
21			MgBr		_	\tilde{s}	13
22		$n\text{-}\mathrm{C_4H_9}$	Li			\widetilde{R}	12
23		04119			LiBr	\ddot{s}	70
24			MgBr		_	$\tilde{\tilde{S}}$	25
25		i - C_3H_7	6			\tilde{s}	12
26		t-C ₄ H ₉	Li			\tilde{s}	16
27		45			$\text{LiO}t\text{-}\text{C}_4\text{H}_9$	\widetilde{R}	45
28		$c ext{-}\mathrm{C_6}\mathrm{H_{11}}$			-	\ddot{s}	6
29					LiBr	R	34
30	C_3H_7	Me			-	\overline{s}	14
31				hexane		S	40
32				ether	LiBr	R	51
33			MgBr		_	R	29
34		$c ext{-}\mathrm{C_6H_{11}}$	Li			SRSSSRRRRRSRSRRSRSSRSSSRSRSSRRSR	24
35		t-C ₄ H ₉			\mathbf{LiBr}	\boldsymbol{R}	66

Table 18. Diastereoselective Conjugate Addition of Organolithiums to Scalemic Vinyl Oxazolines

$R_1 \sim_{OXZ}$	1. RLi, -78°C	Russ
0.72	2. H ₃ O ⁺	$R_1 \longrightarrow OXZ$

				~	07		
entry	\mathbf{R}_1	OXZ^a	RLi	% yield	% ee	R/S	ref
1	Me	73	Et	40	92	R	56
2			n-Bu	38	91	R	
2 3 4 5			n-hexyl	44	99	R	
4			Ph	44	98	\boldsymbol{S}	
5	Et		n-Bu	55	96	R	
6			Ph	39	92	\boldsymbol{S}	
7	i-Pr		<i>n-</i> Bu	53	99	R	
8	t-Bu			50	98	R	
9	cyclohexyl		$\mathbf{E}\mathbf{t}$	73	99	R	
10			n-Bu	79	99	R	
11	$MeOCH_2CH_2$		Et	54	95	\boldsymbol{s}	
12			n-Pr	50	99	\boldsymbol{S}	
13			<i>n</i> -Bu	66	95	\boldsymbol{S}	
14			Ph	60	95	\boldsymbol{S}	
15	Ph		Et	66	97	R	
16			n-Bu	67	99	R	
17	o-MeOPh		Et	83	95	R	
18			n-Bu	75	95	R	
19			Ph	87	95	R	
20	<i>n-</i> Bu	74		53	97	\boldsymbol{S}	58
21	cyclohexyl			60	96	R	
22	Ph		n-Bu	53	96	R	
23			t-Bu	74	94	\boldsymbol{S}	
24	o-MeOPh		n-Bu	61	96	R	

^a OXZ as follows:

Figure 8.

High diastereoselectivity is achieved as a result of the formation of a stereochemically preferred complex between the naphthyl Grignard and the naphthylox-azoline before coupling. In cases where the naphthyl Grignard has an alkyl group at the 2 position, attack in which the naphthyl ring points away from the complex is preferred. Where the 2 position has an alkoxy group, chelation of that group with the magnesium ion of the Grignard results in the formation of a complex which leads to the opposite diastereomer (Figure 9).

This same reaction can be accomplished using 2-(1-alkoxy)naphthyl oxazoline in which the alkoxy group is chiral (Table 20).⁶²

Scheme 13. Synthesis of ar-Tumerone via Diastereoselective Conjugate Addition

Scheme 14. Synthesis of Carbomycins via Diastereoselective Conjugate Addition

Scheme 15. Diastereoselective Conjugate Addition of Organolithium Reagents to Scalemic Vinyl Oxazoles Followed by Oxazaenolate Alkylation

Asymmetric coupling of aromatic Grignard reagents with scalemic aryl oxazolines has also been used to synthesize scalemic biphenyl compounds. In their initial paper on the synthesis of scalemic biphenyls, Meyers and Himmelsbach reported the reaction of various 2-substituted Grignard reagents with 2-(methoxyphenyl)oxazolines in THF resulting in the formation of biphenyl compounds with up to 92% diastereoselectivity (Table 19).63 Use of aryllithium instead of Grignard reagents results in nonstereoselective coupling. The oxazoline group must be removed under conditions mild enough to avoid racemization of the biphenyl.

This coupling reaction was used strategically to form the scalemic biphenyl portion of steganone (84, Scheme 16). Expression of the scalemic biphenyl oxazoline 83, formed in five steps from 3,4,5-trimethoxybenzoic acid, reacts first with the Grignard to give 65% and 9% of the two diastereomeric biphenyls. Removal of the acetal and then the oxazoline rings was done under highly controlled conditions in order to avoid racemization.

A similar approach was used to synthesize (-)-schizandrin (86) and (-)-isoschizandrin (87; Scheme 17).65

Table 19. Diastereoselective Conjugate Addition of Aryl Grignard Reagents with Scalemic Methoxyaryl Oxazolines

entry	Grignard	oxazoline	% yield	% de	R/S	ref
1	MgBr	Meo O N OMe	56	90	R	61
2	MgBr CH ₃	• •	43	87	S	
3	MgBr OCH ₃		65	96	R	
4	MgBr CH ₃	Ph ONE OCH ₃	59	36		63
5	MgBr OCH ₃	,	72	92		
6	MgBr CH ₃	OCH ₃ OCH ₃	75	60		
7	MgBr OCH ₃	·	85	0		
8	MgBr CH ₂ OSiMe ₂ -t-Bu		85	58		
9	MgBr CH ₂ OCH ₂ OCH ₃	Ph OMe OCH ₃	95	68		
10	MgBr O	MeO OMe MeO OMe	74	76		64
11	CH ₃ O OCH ₃		53	47	S	
12 13 14 15 16 17	$R = 2-(1,3-\text{dioxanyl})$ $R = 2-(1,3-\text{dithianyl})$ $R = CH_2OCH_3$ $R = CH_2OTBS$ $R = CH_3$ $R = CH_2OH$ $R = CH_2OCH_3$	CH ₃ O OCH ₃	60 40 68 52 26 56	100 47 72 73 68 56	S S S R S	65 66
18 19 20 21	$R = CH_3$ $R = CH_2OSiMe-t-Bu$ $R = CH_2OH$ $R = CH_2OCH_3$	CH ₃ O OCH ₃	80 90 16 9	80 96 90 50	S S R S	
22 23	$R = CH_3$ $R = CH_2OSiMe_2-t-Bu$		75 60	82 0.96	S S	

Meyers, Meier, and Rawson recently reported that oxazolines formed from valinol and *tert*-leucinol also react with high diastereoselectivities in this reaction.⁶⁶

Meyers and co-workers also developed similar reactions involving the diastereoselective addition of organolithium and Grignard reagents to scalemic 3-

Scheme 16. Enantioselective Synthesis of (-)-Steganone

Figure 9.

pyridyloxazolines (Table 21, entries 1-6).⁶⁷ They found that addition of organolithium or organomagnesium reagents to chiral 3-pyridyloxazoline followed by

Table 20. Diastereoselective Coupling of Scalemic 1-Alkoxy-2-naphthoxazolines with Naphthyl Grignards

quenching with methyl chloroformate gives 4-substituted 1,4-dihydro pyridine derivatives with high diastereoselectivity. Similar results are obtained in the reaction of MeLi with a scalemic 3-quinolyloxazoline 88 to give 89 (eq 16). A similar protocol was used by

Mangeney and coworkers (Table 21, entries 7–18).68 A scalemic aminal, readily obtained from 3-pyridine-3-carboxaldehyde, was used rather than an oxazoline. Cuprate reagents in THF are used to add the allyl substituent to the pyridine ring. The reaction is performed in the presence of an acyl chloride trapping reagent. Diastereoselectivities as high as 95% are obtained. 1,6-Addition product is obtained when cuprate reagents are used in ether or when a Grignard reagent is used in THF. This method has been used in the synthesis of indoloquinolizidines 92 (Scheme 18).69

Scheme 17. Enantioselective Synthesis of (-)-Schizandrin and Isoschizandrin

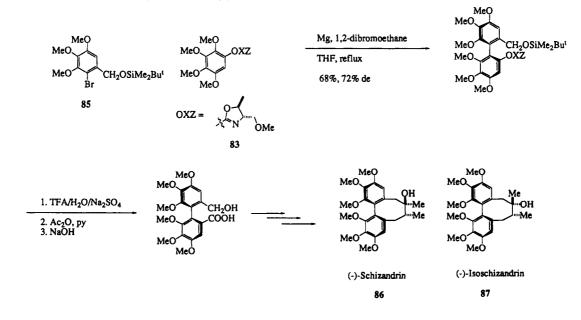


Table 21. Diastereoselective Conjugate Addition to Scalemic 3-Pyridyl Oxazolines and Imidizolidines

entry	X	RM	R_1	solvent	% yield	% de	R/S	ref
1	Ph OMe	MeLi	ОМе	THF	79	88	S	67
2 3 4 5 6 7	Ph NPh	MeMgCl n-BuLi n-BuMgCl EtMgBr PhLi MeLi	СН₃	ether	88 92 98 63 94 -	82 86 90 84 84 -	S S S S -	68
8 9 10 11 12 13 14 15 16 17 18		MeMgBr Me ₂ CuLi Me ₂ CuMgBr Et ₂ CuLi Et ₂ CuMgBr Et ₂ CuLi n-Bu ₂ CuLi (CH ₂ —CH) ₂ CuLi Ph ₂ CuMgBr Et ₂ CuLi		THF ether THF	10 56 90 90 64 90 90 90 90 80	93 95 41 95 32 82 85 95 95 95 95	R R R R R R R R R R R R	69

Scheme 18. Enantioselective Synthesis of Indoloquinolizidines

Scheme 19. Diastereoselective Conjugate Addition of Organolithiums to Scalemic Naphthyl Oxazolines

Table 22. Diastereoselective Conjugate Addition to Scalemic Naphthyl Oxazolines

entry	naphthalene	OXZ	RLi	E	% yield	% de	ref
1	1-naphthyl	73	n-BuLi	MeI	97	88	70
2				$(PhS)_2$	91	88	
3				$ClCO_2Me$	99	94	
4 5 6			MeLi	$(PhS)_2$	56	72	
5			t-BuLi	MeI	98	48	
6			PhLi		99	66	
7			$(H_2C = CMeCH_2)Li$		75	76	
8			(H ₂ C=CH)Li		79	80	
9			$(c-1-C_5H_7)Li$		73	78	
10			(Me₃Si)Li		70	20	
11			EtLi		92	88	
12	1-(5-methoxynaphthyl)		$(H_2C = CH)Li$		80	60	
13			$[H_2C \longrightarrow CH(CH_2)_3]Li$		80	90	
14			n-BuLi		95	94	
15	1-(6-methoxynaphthyl)		$(c-1-C_5H_7)Li$		50	70	
16	1-(4-methoxynaphthyl)		n-BuLi		95	94	
17			t-BuLi		95	30	
18			$[H_2C \longrightarrow CH(CH_2)_3]Li$		90	94	
19			$[H_2C \rightarrow CMe(CH_2)_3]Li$		90	94	
20	2-naphthyl		PhLi		89	80	
21			$n ext{-BuLi}$		85	96	
22		95	PhLi		90	82	
23			n-BuLi		87	88	
24		96	PhLi		93	50	
25		97			90	82	
26			n-BuLi		96	86	
27	1-naphthyl	73			100	88	
28		97			93	84	
29		73	PhLi		100	72	
30		96			94	40	
31		98	<i>n</i> -BuLi		97	94	71
32		••	(H ₂ C=CH)Li		89	88	
33			PhLi		87	7 4	
34		74	n-BuLi		99	98	
35		12	(H ₂ C=CH)Li		94	98	
36			PhLi		81	90	
^a OXZ as	follows:						
	Ph .—OMe	∕ −OMe	OMe OMe	_	V		
	```} <del>`</del> (```````````	- Olvie	Owie - Owie	<u></u>			
	O_N O	Y ^N	O'N O'N	O.W.	O_N		
	73	95	96 97	98	7		

In a further extension of this work, Meyers and coworkers have developed an interesting set of protocols for DCA to scalemic naphthyloxazolines (Scheme 19).70 Reaction of organolithium reagents with scalemic naphthyloxazolines 93 results in addition to the naphthyl ring with high diastereoselectivity to give 94. The intermediate thus formed can be treated with an electrophile to give  $\alpha$  substitution or with trifluoroacetic acid to protonate the aza enolate. Treatment with an electrophile gives exclusively a substitution pattern in which the R group and the oxazoline group are cis to one another (Table 22). In contrast, treatment with trifluoroacetic acid gives a product in which the R group and the oxazoline are trans to one another (Table 23). The diastereoselectivity is controlled similar to that shown above for vinyl oxazolines.

Rawson and Meyers recently reported that excellent levels of diastereoselectivity can be achieved in similar systems using valinol or *tert*-leucinol to form the oxazolines (Table 22, entries 31–36).⁷¹ The *tert*-leucinol system in particular gives the best results seen thus far and is viewed by the authors as the system of choice.

Table 23. Diastereoselective Conjugate Addition to Scalemic Naphthyl Oxazolines

entry	naphthalene	RLi	E	% yield	% de
1	1-naphthyl	n-BuLi	TFA	73	88
2		PhLi		62	70
3		MeLi		42	70
4	1-(5-methoxynaphthyl)	EtLi		85	94
5		<i>i-</i> PrLi		73	92

Unfortunately, the amino alcohol currently is expensive. Valinol, however, is readily available either commercially or by synthesis.

This method has been used in the synthesis of a number of natural products including (-)-podophyllotoxin (106; Scheme 20),⁷² (+)-phyltetralin (102; Scheme 21),^{70a} the A-B ring of alkavinone (104; Scheme 22),⁷³ and analogues to the bottom half of chlorothricolide

#### Scheme 20. Synthesis of Podophyllotoxin

#### Scheme 21. Synthesis of (+)-Phyltetralin

### Scheme 22. Synthesis of the A-B Ring of Aklavinone

106-109 (Scheme 23)⁷⁴ and tetracyclic terpene ring systems related to aphidicolin, scopadulcic acid, and kauranes (Scheme 24).⁷⁵

This method can also be used to form the polycyclic compounds 113 by DCA followed by internal alkylation (Scheme 25).⁷⁶

#### G. $\alpha,\beta$ -Unsaturated Aldimines

Enantiomerically enriched  $\beta,\beta$ -disubstituted aldehydes have been synthesized by reacting Grignard reagents with scalemic  $\alpha,\beta$ -unsaturated aldimines derived from  $\alpha,\beta$ -unsaturated aldehydes and scalemic  $\alpha$ -amino acid esters (Table 24).⁷⁷ The mechanism is believed to involve initial chelation of the imine nitrogen and ester oxygen with the magnesium followed by addition of the R group to the bottom face of the olefin (Figure 10).

This method was also used in the synthesis of scalemic 2-substituted cycloalkanecarbaldehydes⁷⁸ (Table 25) including the natural product (+)-ivalin (115) from 114 (Scheme 26).⁷⁹

DCA followed by alkylation of the intermediate enamine gave the 1,2-disubstituted cycloalkane carbaldehyde (Table 26).80 The stereochemical course of the reaction depends on the method used to carry out the reaction.

Meyers, Brown, and Laucher were able to perform similar additions of organolithiums to scalemic naph-

### Scheme 23. Synthesis of Analogues of Chlorothricolide

thyl aldimines 116 (Scheme 27).⁸¹ The stereochemical outcome of these reactions was rationalized by assuming the organolithium and the naphthyl aldimine form a complex as shown, followed by transfer of the R group to the underside of the naphthyl ring (Figure 11).

## III. Enantioselective Conjugate Addition of Organometallics to Prochiral $\alpha,\beta$ -Unsaturated Ketones

#### A. Scalemic Lithium Organo(alkoxo)cuprates

Among the early attempts to form enantioselective chiral cuprate reagents were those which involved formation of mixed cuprates derived from a chiral alcohol and an organolithium or magnesium reagent (Table 27). Initial attempts at making chiral mixed cuprates from chiral alcohols involved the use of 1,2: 5,6-di-O-isopropylidene- $\alpha$ -D-glycofuranose (2),82 (S)-prolinol (125),83 cinchonidine (131),84 (R)-(2,4,6-trimethoxybenzylidene)phenylglycinol (134), and (R)-2-

### Scheme 24. Enantioselective Synthesis of Tetracyclic Terpene Ring Systems Related to Aphidicolin, Scopadulcic Acid, and Kauranes

#### Scheme 25. Diastereoselective Conjugate Addition to Naphthyl Oxazoline Followed by Internal Alkylation

Table 24. Diastereoselective Conjugate Addition to  $\alpha,\beta$ -Unsaturated Aldimines of Optically Active  $\alpha$ -Amino Acid Esters

entry	R	$\mathbf{R}_1$	$R_2$ –M	solvent	% yield	% ее	R/S
1	Me	i-Pr	PhMgBr	ether	11	67	R
2			•	THF	55	53	
3				THF-ether (5:1)	53	57	
4				ether-THF (5:1)	49	65	
5				toluene-THF (6:1)	36	49	
6				hexane-THF (3:1)	38	44	
7			$Ph_2Mg$	ether	31	67	
8				THF	64	52	
9			PhMgBr-CuI	ether	12	65	
10			<b>6</b>	THF	64	52	
11			PhMgBr	ether-THF (5:1)	42	65	
12			c-C ₆ H ₁₁ Br	000000 00000	6	71	
13		t-Bu	PhMgBr		52	91	
14		. 20	c-C ₆ H ₁₁ MgBr		53	96	
15			n-BuMgBr		40	98	S
16			[(CH ₃ ) ₂ C=CH(CH ₂ ) ₂ ]MgBr		48	98	$\tilde{R}$
17	Ph		EtMgBr		56	95	Š

Table 25. Diastereoselective Conjugate Addition to Scalemic Cyclic Aldimines

	LN.	CO21-Bu	1. R ₁ MgBr	Ç	HO
(CH ₂ )	n-4		2. H ₃ O ⁺	(CH ₂ ) _{n-4}	)** R ₁
entry	n	R	$\overline{\mathbf{R}_1}$	% yield	% ee
1	5	i-Pr	Ph	72	61
2		t-Bu		82	82
3		i-Pr	$CH_2$ — $CH$	36	71
4		t-Bu	_	69	92
5	6	i-Pr	Ph	52	49
6		t-Bu		54	91
7		i-Pr	$CH_2$ — $CH$	31	69
8		t-Bu	-	68	93

butanol (119).⁸⁵ In all cases, the ee's observed were well below 50%. Imamoto and Mukaiyama reported the use of a cuprate formed from N-methylprolinol (126) and MeMgBr which, when reacted with chalcone, gives the expected product in  $\leq 68\%$  ee.⁸⁶

Figure 10.

Scheme 26. Enantioselective Synthesis of (+)-Ivalin

Leyendecker et al. used derivatives of proline as cuprate ligands for ECA to several ketones and obtained ee's as high as 88%.⁸⁷ Analogues of these ligands, 127–

Table 26. Diastereoselective Synthesis of 1,2-Disubstituted Cycloalkanecarboxaldehydes

					%	yield	
entry	method	n	R	$R_1X$	cis	trans	% <b>ee</b>
1	A	5	Ph	CH ₃ I	65	0	82
2			$CH_2$ — $CH$		61	0	92
3		6	Ph		62	1	91
4			$CH_2$ — $CH$		51	11	93
5	В	5	Ph		62	15	82
6			$CH_2$ — $CH$		0	62	92
7		6	Ph		0	55	91
8		6	$CH_2$ = $CH$		0	67	93
9			<del>-</del>	$PhCH_2I$	0	67	93
10				$CH_2 = CHCH_2Br$	0	63	93
11				$C_2H_5I$	0	65	93
12				CH ₃ OCH ₂ Cl	0	52	93
13	C	5	Ph	CH ₃ I	44	2	82
14		6			49	0	91

Scheme 27. Diastereoselective Conjugate Addition to Scalemic Naphthyl Imines

	113		114	
R	% Yield	<u>% ee</u>	% Yield	<u>% ee</u>
i-Pr	78	95	-	-
n-Bu	78	95	85	95
t-Bu	85	95	75	95

129, give poor ee's. Corey, Naef, and Hannon reported a chiral mixed cuprate, LiCu(OR*)R₁ in which HOR* is one of two diamino alcohols, 137 and 138, which were derived from (1R,2S)-(-)-ephedrine and (R)-mandelic acid, respectively.88 The cuprate reagent is formed by deprotonating the alcohol with an alkyllithium reagent, reacting this alkoxide with CuI in THF/dimethyl sulfide to form the copper alkoxide, and adding an additional 1 equiv of the alkyl lithium to form the reagent. The reaction is performed at -78 °C by adding the enone neat to the reaction mixture. The use of even slightly contaminated alkyllithium reagents results in lower ee's. In order to rectify this situation, a modified protocol was developed in which MeI is added to the reaction mixture in order to react with alkoxides presumed to be present as contaminants in old bottles of akyllithium reagents.

A mechanism was proposed to account for the enantioselectivity observed in this reaction (Figure 12). As shown, the cuprate is represented as a monomer in which one lithium is coordinated to the ligand through the

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Figure 11.

alkoxide oxygen and two nitrogen atoms and the copper is bridging between the alkoxide oxygen and the alkyl group, R. An additional lithium ion tethers the enone through the carbonyl oxygen to the alkoxide oxygen. This model suggests the predominant enantiomer in this reaction will be R.

Tanaka, Ushio, and Suzuki recently reported the use of 10 chiral amino alcohols, 140-149, for use as chiral cuprate alkoxide ligands. The ligands were used to form chiral methyl (alkoxy) cuprates and then reacted with (E)-2-cyclopentadecenone to form enantiomerically enriched Muscone (eq 17). They later reported that the enantioselectivity of this reaction, using ligands 144 and 149, can be improved by forming the reagent in toluene with 2-10 equiv of THF. In each case products of 100% ee, as determined by optical rotation, are obtained. The sum of the

$$\begin{array}{c|c}
\hline
 & LiCu(OR^*)Me \\
\hline
 & R^*OH=149
\end{array}$$
Muscone

Other scalemic alcohols and amino alcohols have been used by several groups but without great success. 91,92

Figure 12. Proposed intermediate in conjugate addition with Corey's cuprate.

#### B. Scalemic Lithium Organo(amido)cuprates

S = THF;  $X = \Gamma$  or THF

A number of research groups have looked at the use of chiral lithium organo(amido)cuprates as agents for ECA to enones, particularly cyclic enones (Table 28). Bertz, Dabbagh, and Sundararajan formed mixed cuprates with phenyl as the transferable ligand and chiral primary amides as the nontransferable ligand and reacted them with 2-cyclohexenone (entries 1-50).91 Enantioselectivities as high as 50% were reported.

Dieter and Tokles reported the use of four derivatives of proline, 198-201, as chiral auxiliaries in organo(amido)cuprates (entries 51-111).93 Enantiomeric excesses as high as 83% were attained in a survey that included several enones as well as the above-mentioned nontransferable ligands. They later reported some difficulties in reproducing their work and extended their original investigation to include other chiral ligands. 94

In order to explain the enantioselectivity observed, they suggest the lithium organo(amido)cuprate forms a dimeric complex, with the organo and amido ligands occupying alternating bridging positions (Figure 13). They further suggest that the second chelating group (OMe, NC₄H₈, SMe, or SPh) occupies a ligand site in the lithium coordination sphere. The structures thus formed possess  $C_2$  symmetry. The enone complexes to the cuprate either through a lithium-oxygen complex or a copper-olefin complex or both. The alkyl group is transferred to the face of the olefin coordinated to the copper atom. They assume preferential conjugate addition with the complex which gives the S isomer. The cuprate derived from ligand 198 has been used in the synthesis of (+)-confertin (Scheme 28).95

Rossiter and Eguchi reported a study in which a series of 11 chiral secondary amines, 168, 171, 173, 184, 207, 208, and 211-215, were screened as chiral nontransferable cuprate ligands in the conjugate addition of nbutyl to 2-cyclohexenone (entries 112-166).96 The structures of the chiral ligands were based on 1-phenylethaneamine. The structure of this ligand was modified systematically in order to discern relationships between the structures of the ligands and the enantioselectivity of the reaction. Of the ligands screened, ligand 208 proved to be the most successful, giving 3*n*-butylcyclohexanone in 83% ee and up to 92% yield and 3-phenylcyclohexanone in 97% ee. The cuprate formed using ligand 208 was reacted with cyclic enones of ring sizes 5-8 in order to discern the overall selectivity of this reagent with other substrates.97 The enantioselectivity with this series of enones increased, going from cyclopentenone to cycloheptenone, and then dropped with cyclooctenone. Reaction with cycloheptenone using either methyl or butyl as the transferable ligand gives product in 97% ee.

Enantioselectivity in the reactions using ligand 208 was rationalized by first assuming the amidocuprate forms a dimeric complex similar to that proposed by Dieter and Tokles (Figure 14). According to this model, the complex assumes a configuration in which both Nmethyl groups point up relative to the plane of the complex. The piperidine groups bind to the lithium atoms and are positioned roughly where a solvent molecule would normally reside. The phenyl groups reside under the plane of the complex blocking its underside from interaction with the enone. The enone binds to one of the lithium atoms followed by interaction of the olefin with one of the copper atoms. This positions the enone directly over the stereochemically accessible side of the complex in order to obtain best orbital overlap and to avoid undesirable stereochemical interactions with the two N-alkyl groups. When the re face of the enone complexes with cuprate, the hydrogens on the 4, 5, and 6 carbons of the cyclohexenone interact unfavorably with one of the methyl groups pointing out of the plane of the complex, making this a relatively high energy complex. When the si face of the enone interacts with the cuprate, the same hydrogens will point toward the more stereochemically open corner of the complex. This model predicts the S enantiomer will be formed preferentially with the S ligand in conformance with experimental observation. Rossiter and co-workers also reported asymmetric amplification with this cuprate.98 Cuprate formed with ligand of 56% ee and with *n*-butyl as the transferable ligand was reacted with 2-cycloheptenone to give 3-nbutylcycloheptanone in 81% ee.

Lippard and co-workers recently described a copper-(I) complex capable of catalyzing the conjugate addition of Grignard reagents to enones with up to 78% ee and moderate to high chemical yields (Table 29).99 These complexes consist of copper(I) bound to the chiral aminotropone imines H(R-CHIRAMPT) (222) and H(R-CHIRAMPT)NEAT) (221). They found the enantioselectivity of these reactions is significantly increased by running them in the presence of HMPA and silyl chlorides. For example, reaction of n-BuMgCl with 2-cyclohexenone in the presence of 2 equiv of HMPA and  $Ph_2(t-Bu)SiCl$ and 0.037 equiv of Cu[R-CHIRAMPT] gives 3-n-butylcyclohexanone in 53% yield and 74% ee. Slightly higher ee's are obtained when a stoichiometric amount of the catalyst is used. An X-ray structure of the chiral copper complex has been obtained. 100

#### C. Scalemic Lithium Diorganocuprates

Several groups have used scalemic cuprate reagents in which one of the ligands is (S)-2-[1-(dimethylamino)ethyl]phenyl or (S)-2-[cyclohexyl(dimethylamino)methyl]phenyl. Andersson et al. found that reaction of [(S)-2-[1-(dimethylamino)ethyl]phenyl](2-thienyl)copperlithium with 4-phenyl-3-buten-2-one, 2-cyclohexenone, and 2-cyclopentenone in each case gave the S product in which the scalemic ligand was transferred.¹⁰¹ In the case of 2-cyclopentenone, conjugate addition occurred with 84% diastereoselectivity (eq 18). Gustafsson¹⁰² and Malmberg and Nilsson performed similar experiments, but with cuprates in which the achiral ligand was transferred (eq 19).

Table 27. Enantioselective Conjugate Addition to Enones with Scalemic Organo(alkoxo)cuprates, MCu(OR*)R

				2. H₃O ⁺	∼ _R			
entry	substrate	HOR* d	RM	solvent	% yield	% <b>ee</b>	R/S	ref
1	2-cyclohexenone	2	MeLi	ether	NG	[-0.93]	s	82
2 3			<i>n-</i> BuLi PhLi		NG NG	[-0.8] [+0.42]	ND ND	
4		125	MeLi		NG NG	16	S	83
5	1,3-diphenylpropenone	122	1,1021		44	3	š	84
6	,	123			59	2	S	
7		124			35	0	-	
8		130			21	34	$\boldsymbol{s}$	
9 10		131 132	MeMgBr	THF	8 35	0 4	– R	
11		132	MeLi	ether	59	15	n S	
12		100	MeMgBr	THE	23	25	S S S	
13		134	MeLi	ether	17	31	$\tilde{s}$	
14			MeMgBr	THF	30	0	_	
15		135	MeLi	ether	75	12	R	
16	2-cyclohexenone	119	n-BuLi		48	6	ND	85
17	4-phenyl-3-buten-2-one	190			65 70	[-4.4]	ND	
18 19	2-cyclohexenone	120 4		THF	$70 \\ 42$	[-3.0]	ND ND	
20	z-cyclonexenone	121		IHF	54	4 8	ND	
21	(E)-1,3-diphenylpropenone	126	MeMgBr		88	61	S	86
22	(Z)-1,3-diphenylpropenone				71	68	Š	
23	2-cyclohexenone	125		benzene	61	26	$\boldsymbol{s}$	87a
24	•			THF	85	6	$\boldsymbol{S}$	
25	1,3-diphenylpropenone				70	15	s	
26	4 mb 0 b			toluene THF	42	20	S S S S S	
27 28	4-phenyl-3-butenone			toluene	61 36	2 <del>9</del> 37	ಶ	
29	1,3-diphenylpropenone	126		widelie	32	2	S	
30	1,0 dipionjiproponone	120		THF	81	41	š	
31	4-phenyl-3-buten-2-one			toluene	36	3	R	
32				THF	92	10	$\boldsymbol{S}$	
33	2-cyclohexenone			benzene	64	1	$\tilde{R}$	
34	(F) 10 3: 1 1	105		THF	70	5	R	0=1
35 36	(E)-1,3-diphenylpropenone	127 125			55 70	7 15	S	87b
3 <del>0</del>		125 126			80	88	S S	
38		128			94	0	-	
39		129			86	$\overset{\circ}{2}$	R	
40	2-cyclopentenone	137	EtLi		68	77	R	88
41	-		n-BuLi		60	72	R	
42			t-BuOCH₂Li		52	81	R	
43	2-cyclohexenone		EtLi		90	92	R	
44 45			<i>n-</i> BuLi t-BuOCH₂Li		90 73	89 85	R R	
46 46		138	<i>t-</i> BuOCH₂Li MeLi	ether/toluene	60	90	R R	
47		139	n-BuLi	THE	68	16	R	92
48		140		<del>-</del>	63	14	R	
49		141		_	68	15	R	
50	(E)-2-cyclopentadecenone	142		toluene	82	49	S S S	89
51		143		toluene/THF	72	39	S	00
52 53		144 145		toluene/THF	89 86	100 50	S	90 89
54		146		widelie	90	33	R.	09
55		147		toluene/THF	80	95	R R	90
56		148		toluene	90	64	$\boldsymbol{R}$	89
57		149		toluene/THF	90	100	S	90
58		150			70	39	R	89
59	2 avaloha	151	Dht :	ather	59	15	S R	01
60 31	2-cyclohexenone	124 125	PhLi	ether	38 52	10 10	R S	91
62		152			31	10	R	
63		153			53	0	-	
64		154			15	20	R	
65		155			37	10	R	
66		156			14	10	R	
67 68ª		157			94 01	50	R	
ნგ ^ა					91 48	20 40	R R	
09° 70°					46 72	20	R R	
71				THF	34	50	R	
					•	-		

Table 27. (Continued)

136 X = NMe ₂ 138 X = \frac{7}{2}N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	entry	substrate	HOR* d	RM	solvent	% yield	% ee	R/S	ref
39   50   R   74°   38   0   -   75   76   76   PhMgBr   41   10   5   77   76   77   PhLi   THF   39   50   R   77   78   PhMgBr   77   50   5   79   PhMgBr   77   50   5   79   PhLi   DME   77   50   70   70   70   70   70   70	72ª					46	10	R	
746 75						39	50	R	
## Cubr used. **CuCN** used. **CuCN** used. **R*OH = **CuBr** used. **CuCN** used. **R*OH = **I38** R* R*, R*, R* R*, R*, R* R*, R*, R* R*, R*,						38			
76 PhMgBr 77 PhLi 77 PhLi 78 PhMgBr 77 50 S 90 R 99 PhLi 10ME 30 30 30 R 80					ether	65	20	R	
80				PhMgBr				S	
80	77			PhLi	THE			$\tilde{R}$	
80	78							S	
80	79			PhLi	DME			Ř	
81	90			1 11111				D	
82 dioxane 12 0 - 88 84 158 86									
83	91							_	
84 158 ether 73 0 - 85 159 44 0 - 86 160 53 10 R 87 161 51 20 R 88 162 36 10 R 89 163 3 14 20 R 90 164 33 0 - 90 164 33 0 - 91 165 27 0 - 92 166 6 6 20 S 93 167 34 10 R 90 164 991 167 8	02							_	
86			150		IVIe25			_	
86					etner			_	
88	85								
88 163 164 163 114 20 R 90 164 33 0 0 - 91 185 27 0 0 - 92 166 6 20 S 93 166 6 20 S 93 166 6 20 S 93 167 34 10 R  **CuBr used. **CuOTf used. **CuCN used. **R*OH =  **NH2 OH	86							R	
89 163 14 20 R 90 164 33 3 0 - 91 185 27 0 - 92 186 6 20 S 93 167 34 10 R  a CuBr used. b CuOTf used. c CuCN used. d R*OH =  """ "" "" "" "" "" "" "" "" "" "" "" "	87							$R = \frac{R}{r}$	
90 164 33 0 - 91 165 27 0 - 92 166 6 20 S 93 167 34 10 R  **CuBr used. **CuOTf used. **CuCN used. **R*OH =  **NH2 OH	88							R	
91 166 6 6 20 S S 93 166 167 34 10 R    **CuBr used. **CuCN used. **R*OH =   **P**							20	R	
91 166 20 S 93 166 6 20 S 93 140 R*OH =  **CuBr used. **CuCN used. **CuCN used. **R*OH =  **Property butanol to the company of						33	0	-	
92 166 6 20 S 93 167 34 10 R  **CuBr used. **CuCN used. **CuCN used. **R*OH =  **Part of the control of the con	91								
98 167 34 10 R  a CuBr used. b CuOTf used. c CuCN used. d R*OH =  19 = (R)-2-butanol 10 = (S)-2-methylbutanol 1128 R = He 1128 R = Me 1129 R = BOC 130 131  131 R = Et, R = H 132 R = Et 123 R = Me 129 R = BOC 130 131  131 R = Et, R = H 132 R = He 133 R = He 134 R = Nmethylpyrrolyl 142 R = hiophenyl 143 R = phenyl 144 R = N-methylpyrrolyl 144 R = N-methylpyrrolyl 145 R = phenyl 144 R = nicrophenyl 145 R = furanyl 146 R = furanyl 147 R = hiophenyl 148 R = phenyl 148 R = phenyl 148 R = phenyl 149 R = nicrophenyl 149 R =	92		166			6	20	s	
a CuBr used. b CuOTf used. c CuCN used. d R*OH =    19 = (R)-2-methylbutanol			167			34	10	R	
19 = (R)-2-butanol	4 CuBr II	and b CuOTf used	CuCN used di	R*0H =					
122 R = Et 123 R R R R R R R R R R R R R R R R R R R	Cubi	ised. CdO11 dsed.	NH ₂	NH _a			ч	_	н ^
122 R = Et 123 R R R R R R R R R R R R R R R R R R R				он дон	\ он	$\bigcap$	но, 🖳	∵ но⊾	人N/N
125 R = H 126 R = Me 127 R = BOC 130 131  OMe OH OM OM N R 136 X = NMe 135 X = NMe 135 X = NMe 137 X = NMe 138 X = V NMe 140 X = piperidinyi 141 X = morpholinyi 142 R = thiophenyi 144 R = N-methylpyrrolyi 148 R = phenyi 149 R = N-methylpyrrolyi 150 R = Me  OH	119 = (R)-2-bu	itanol HO	H		N Con	N OH			
125 R = H 126 R = Me 127 R = BOC 130 131  OMe OH NR OH Ph A 136 X = NMe 138 X = X, NMe 143 R = phenyl 144 R = phenyl 144 R = phenyl 144 R = phenyl 144 R = phenyl 145 R = furanyl 145 R = furanyl 146 R = furanyl 147 R = thiophenyl 148 R = phenyl 149 R = N-methylpyrrolyl 149 R = N-methylpyrrolyl 149 R = N-methylpyrrolyl 149 R = N-methylpyrrolyl 150 R = Me  157 R = Me, R = H, R = Me, R = Me 158 R = H, R = Me, R = Me 158 R = H, R = Me, R = Me 161 R = OH, R = H  Me  Me Me Me Me Me Me Me Me Me Me Me M	120 = (S)-2-me	ethylbutanol	122 R = E	Et 123	Ŕ	Ŕ			
126 R = Me 127 R = BOC 130 131  OMe OH N R OH N R OH N Ph X Ph			124 R = F	Ph .					
126 R = Me 127 R = BOC 130 131  OMe OH N R OH N R OH N Ph X Ph					125 R = H	128 R = Me	<b>⋄</b> N	<b>⋄</b> N	
OMe OH OH OH OH OH OH N R OH N					126 R = Me				
OME OME OME OM OME OM					127 R = BOC		130	1	31
136 X = NMe ₂ 138 X = X, NMe ₂ 139 X = OMe 142 R = thiophenyl 146 R = furanyl 147 R = thiophenyl 147 R = thiophenyl 148 R = phenyl 148 R = phenyl 148 R = phenyl 149 R = N-methylpyrrolyl 149 R = N-methylpyrrolyl 149 R = N-methylpyrrolyl 150 R = Me  HOH HOH HOH HOH HOH HOH HOH HOH HOH H	OMe	_OH		_	011				
136 X = NMe ₂ 138 X = \( \frac{1}{2} \) \( \cdots \) \(	Jivie	OH I	OH I	1	OH V	₩.	$\checkmark$		$\overline{}$
136 X = NMe ₂ 138 X = \( \frac{1}{2} \) \( \cdots \) \(		N N N	<b>→</b> Ph	Ƴ ^X Ph	^^	N R		7	P
136 X = NMe ₂ 138 X = \( \frac{1}{2} \) \( \cdots \) \(	1eO~~	)Me		i	<u>J.</u>	20n	4	Ň _ R	i, Li
132 R = Et, R ₁ = H 135 137 X = NN NMe ₂ 139 X = OMe 143 R = thiophenyl 144 R = hiophenyl 144 R = n-methylpyrrolyl 145 R = furanyl 145 R = furanyl 146 R = furanyl 147 R = thiophenyl 148 R = phenyl 148 R = phenyl 148 R = phenyl 149 R = N-methylpyrrolyl 150 R = Me  HO H CF ₃ OH OH OH NH ₂ Ph NH ₂ Ph NH ₂ Ph NH ₂ Ph NH ₃ NR ₃ NR ₄ NR ₅ NR ₅ NR ₅ NR ₆ NR ₇ NR ₇ NR ₈ NR ₉ NR ₉ NR ₁ NR ₉ NR ₉ NR ₉ NR ₁ NR ₉ NR		•	136 X = NM	e ₂ 138	$X = \lambda^N \sim NMe_2$		но	Н	OH
133 R ₁ = H, R = i-Pr 134 R = piperidinyl 134 R = Ph. R ₁ = H  141 X = morpholinyl  145 R = furanyl  148 R = phenyl  149 R = N-methylpyrrolyl  140 R = N-methylpyrrolyl  1			1	-	-	142 R = thiophenyl			151
141 X = morpholinyl  145 R = furanyl  149 R = N-methylpyrrolyl 150 R = Me  150 R = Me  151 R = H, R = H  141 X = morpholinyl  145 R = furanyl  149 R = N-methylpyrrolyl 150 R = Me  150 R = Me  150 R = Me  151 R = Me, R = H, R = Me 151 R = H, R = Me, R = H, R = Me 152 R = H, R = Me 153 R = H, R = Me, R = H, R = Me 153 R = H, R = H, R = Me 153 R = H, R = H, R = H  164			137 X = "\\".	✓NMe ₂ 139	X = OMe Y = piperidiny!				
150 R = Me  160 R ₁ = H, R ₂ = OH  161 R ₁ = OH, R ₂ = H  162  164  165  164  (*)-yohimbins				141	X = piperkiliyi X = morpholinyl				
OH HOH NH2 Ph NH2 OH HNN NH2 Ph NH2 OH HNN N	134 K = Ph, I	k ₁ = H		211	· · · · · · · ·		150 R = M	le	
OH HOH NH2 Ph NH2 OH HNN NH2 Ph NH2 OH HNN N	HO H CE	он 🔨	<b>DI</b>	OH OH					Ò
OH H NH2  I57 R ₁ = Me, R ₂ = H, R ₃ = Me  I58 R ₁ = H, R ₂ = Me, R ₃ = Me  I59 R ₁ = Me, R ₂ = H, R ₃ = H  I61 R ₁ = OH, R ₂ = H  I62  I  I64  I65  I64  I65  I64  (*)-yohimbins	Cr3	まし しょうしょう しょうしょう しょうしゅ しょうしゅ しょうしゅ しょうしゅ しょうしゅ しょうしゅ しょうしゅ しょうしゅ しゅうしゅ しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しょうしゅう しょうしゃ しょう しょうしゃ しょうしゃ しょうしゃ しょうしゃ しょうしゃ しょうしゃ しょう しゃ	l Nu.		h .				$HN \stackrel{\longleftarrow}{\searrow} N$
152 153 154 155 156  157 R ₁ = Me, R ₂ = H, R ₃ = Me 158 R ₁ = H, R ₂ = Me, R ₃ = Me 159 R ₁ = Me, R ₂ = H, R ₃ = H 161 R ₁ = OH, R ₂ = H 161 R ₁ = OH, R ₂ = H 162 1  164 165 164  (*)-yohimbine		OH 🗸	TON			R	R ₂ PI	hO	
152 153 154 155 156  157 R ₁ = Me, R ₂ = H, R ₃ = Me 158 R ₁ = H, R ₂ = Me, R ₃ = Me 159 R ₁ = Me, R ₂ = H, R ₃ = H 161 R ₁ = OH, R ₂ = H 162 1  164 165 164  (*)-yohimbine		··· ~	~···	****2	N _R	Ph	<b>∽</b> ОН	<i>)</i> −N ′	
152 153 154 155 156  157 R ₁ = Me, R ₂ = H, R ₃ = Me 158 R ₁ = H, R ₂ = Me, R ₃ = Me 159 R ₁ = Me, R ₂ = H, R ₃ = H 161 R ₁ = OH, R ₂ = H 162 1  164 165 164  (*)-yohimbine			<b>✓</b>		$R_1 R_2$	· · ·		QH	no o
157 R ₁ = Me, R ₂ = H, R ₃ = Me 158 R ₁ = H, R ₂ = Me, R ₃ = Me 159 R ₁ = Me, R ₂ = H, R ₃ = H 161 R ₁ = OH, R ₂ = H 162  164  165  164  (-)-solasodine  (+)-yohimbine	152	153	154 155	156	•			J.,	$\vdash$
158 R ₁ = H, R ₂ = Me, R ₃ = Me 159 R ₁ = Me, R ₂ = H, R ₃ = H 161 R ₁ = OH, R ₂ = H 162  1 Me					157 $R_1 = Me$ , $R_2 =$	$H, R_3 = Me$ 160 $R_1 =$	H, R ₂ = OH		но
Me H Me H Me H Me H Me N H M Me N H M					158 $R_1 = H, R_2 = M$	$R_1 = M_2 = M_3 = M_1 = M_2 = M_2 = M_3 $	OH, R ₂ = H	163	
Me M					137 K ₁ = Mc, K ₂ =	11, 123 - 11		102	163
Me Me Me H H H H Me Me H H Me Me (-)-solasodine Me Me (-)-solasodine Me	(	$\overline{}$	м	е н Ме			Ме H	H —Ma	
H MeOOC OH HO H  167  164  165  164  (-)-solasodine (+)-yohimbine	Ų	N N	Me 🔭	N H	$N \longrightarrow N$		Me AN	$\approx$	
MeOOC OH HO HO HO (-)-solasodine  164 165 164  (-)-solasodine  (+)-yohimbine		н н 🖊 🔭	Ma T	ر _ا ک	н н 🦯 н	N	1e 0	-	
ÔH HO ÎH HO 167  164 165 164  (+)-yohimbine		н			ر لد	~			
167 164 165 164  (-)-yohimbins			"JH			HO	(·)-sc	olasodine	
164 165 164 (-)-yohimbine			HO. ~ H~		ŎН	ло			
(+)-yohimbine						1	.67		
		164	165						
(7)-Williamenie		(-)-corynanthine	(±_taga_sidis	ne.	(+)-yohimbine				
	···		(+)-wiiiadou	<del></del>					

Another approach to stereoselective conjugate addition involves the reaction of scalemic copper and zinc azaenolates with cyclic enones (Table 30). The azaenolates are formed by reacting scalemic 1,2-amino ethers with acetone to form the imine, deprotonating at the  $\alpha$ -position of the imine with n-butyllithium, and treating this azaenolate with a copper salt or dimethyl zinc. Reaction of these complexes with 2-cyclopentenone and 2-cyclohexenone gives, after hydrolysis, 3-acetonylcyclopentanone and 3-acetonylcyclohexanone,

$$\begin{array}{c}
0 \\
R \\
Cu \\
N \\
Cu \\
R
\end{array}$$

$$0 \\
R \\$$

Figure 13.

respectively. This protocol was used in the synthesis of trans-dihydrindandione systems (Scheme 29).¹⁰⁵

Table 28. Enantioselective Conjugate Addition to Enones with Chiral Organo(amido)cuprates, LiCu(NR¹R²)R

 $R_1R_2NLi + RCu$  — "LiCu(NR₁R₂)R"  $\frac{1}{2}$   $\frac{O}{R_1Q^+}$ 

					2. H ₃ O				
entry	${f ligand}^b$	substrate	R	solvent	CuX	% yield	% ee	R/S	ref
1	168 (S)	2-cyclohexenone	Ph	ether THF	CuI	69	30	S	91
2 3	168 (R)			ether		$\begin{array}{c} 12 \\ 72 \end{array}$	30 30	R R	
4	169 (R)			Cuici		62	40	R R	
	` ,					72	30	R	
5 6 7					CuBr	47	40	R	
7					CuOTf	34	20	R	
8 9					CuCN CuI/LiCN	35 54	0 <b>40</b>	R	
10					CuCN/LiI	52	30	R R	
11					CuI/LiI	46	40	R	
12					CuI/LiBPh4	41	40	R S	
13	1 <b>69</b> (S)				CuI	74	30	$\boldsymbol{S}$	
4			а	min		2	0	70	
5 6				THF		6 11	10	R R	
7			а	ether		78	10 20	S (0 °C)	
.8				CULCI		79	10	S (25 °C)	
9	170					50	40	S	
20	175					23	40	R	
1	176					74	0	~	
2	177					88	10	S	
3 4	178 179					48 86	10 20	S	
5	180					69	10	S S	
26	181					42	Õ	J	
27	182					31	30	R	
28	183					32	10	$\underline{s}$	
9	184 (S,S)					32	20	R	
80 81	185 186					34 12	40	R R	
2	187					49	10 10	R R	
3	10.			THF		22	60	R	
4	188			ether		62	50	R	
35			а			29	10	R	
16				THF		26	0	_	
7			a	hamana		10	10	R	
8 9				hexane Me ₂ S		51 53	30 10	S R	
0				$\mathrm{Et_2S}$		56	0	A	
1	189			ether		72	10	R	
2	190					66	10	R	
3	191					47	10	$\underline{S}$	
4	192					59	10	S	
5 6	193 194					8 24	10	S R	
7	195					6	50 <b>4</b> 0	R R	
8	196					47	10	R	
9	197					33	0		
0	198					36	20	R	
1			Me		CuBr	77	82	S (−25 °C)	93
2					CuBr/LiBr	35 69	63 79	S (_110.0C)	
53 5 <b>4</b>				THF	CuBr	69 60	79 53	S (-110 °C) R (-78 °C)	
55				PhCH ₃		63	70	R (-18 °C) R	
56				ether	CuSCN	57	75	$\ddot{R}$	
57				$PhCH_3$		68	83	R R	
58		01		ether	CuBr	24	20	R	
59 60		2-cyclopentenone				50 36	20 23	S (-25 °C) S (-78 °C)	
61				PhCH ₃		70	23 37	R (=18 °C)	
62				ether	CuSCN	51	33	R	
63				$PhCH_3$		77	41	$\boldsymbol{S}$	
34		0 1:	t-Bu	ether	CuBr	56	35	$\boldsymbol{S}$	
5		2-cyclohexenone	n-Bu			42	28	S (−25 °C)	
6 7			t-Bu			83 25	52 67	<i>S</i> S (−78 °C)	
8		trans-3-penten-2-one	n-Bu			25 32	49	S (-25 °C)	
9		o ponton a one				36	64	S (-78 °C)	
70				THF		62	38	R	
71				ether	CuSCN	37	68	R	

entry	ligand ^b	substrate	R	solvent	CuX	% yield	% ee	R/S	ref
72	<u>-</u>	trans-3-octen-2-one	Me		CuBr	46	58	R	
73	100	01-h	Me	.4h	CuSCN	56	75	R	
74 75	199	2-cyclohexenone 2-cyclopentenone	Me	ether	CuBr	39 35	8 1	S S	
76	200	2 cyclopolitonolic		PhCH ₃		58	32	R	
77						60	35	R	
78		2-cyclohexenone		THF		70	52	R	
79 80				ether PhCH3		78 71	71 80	S R	
81		2-cyclopentenone	t-Bu	ether		50	50 50	S S	
82		trans-3-penten-2-one	n-Bu	THF		48	46	$\overset{\smile}{R}$	
83		•		ether		51	61	s	
84		trans-3-octen-2-one	Me			42	74	R	
85	201	2-cyclohexenone	<b>D</b>			68	80	$\frac{S}{S}$	
86 87			<i>n-</i> Bu <i>t-</i> Bu			46 51	58 69	S S S	
88		2-cyclopentenone	Me			60	33	S	
89		trans-3-penten-2-one	n-Bu			52	64	$\boldsymbol{s}$	
90		trans-3-octen-2-one	Me			78	83	$\boldsymbol{R}$	
91	123	2-cyclohexenone				54	69	$\boldsymbol{R}$	
92	198				CuI		20	R	94
93			D		CuBr CuT	00	30	R	
94 95			<i>n-</i> Bu		CuI CuBr	98 56	$\begin{array}{c} 8 \\ 22 \end{array}$	R R	
96	202		Me		CuI	100	30	R R	
97	202		1110		CuBr	95	46	$\stackrel{\sim}{R}$	
98				PhCH ₃	CuI	-	17	R	
99					CuBr		40	R	
100			ъ	THF		29	0	_	
101			<i>n-</i> Bu	ether	CuI	45	22 10	R R	
102 103				THF	CuBr	100 100	0	-	
103	<b>205</b> (R,S)			ether	CuI	100	37	R	
105	200 (11,0)			00000	CuBr		70	$\boldsymbol{R}$	
106					CuBr/n-Bu ₃ P	84	52	$\boldsymbol{R}$	
107	<b>205</b> $(R,R)$				CuI		25	R	
108					CuBr	01	66	R	
109 110	206				CuBr/TMSCl CuI	91 82	0 26	- S	
111	200				CuBr	60	28	$\ddot{s}$	
112	168 (R)		n-Bu	DMS	CuI	88	4	$\tilde{R}$	96
113				ether		66	15	R	
114	100	2-cycloheptenone				19	11	R	92
115	169	2-cyclohexenone				88 60	9	R R	
116 117	171			DMS		62 84	13 50	S S	96
118	171			ether/DMS		53	24	R	50
119				ether		46	21	$\boldsymbol{R}$	
120			Ph	ether/DMS		44	10	R	
121	4-6	2-cycloheptenone	n-Bu	ether		26	12	R	92
122	172	2-cyclohexenone		DMS		74	51	S R	
$\frac{123}{124}$				DMS/ether ether		45 51	18 6	л Р	
125	173			DMS		64	29	R R S R R	96
126				ether/DMS		28	8	Š	
127	174			DMS		59	29	R	92
128				ether/DMS		11	7	R	
129	184			DMS		43	43	R	96
130 131		2-cycloheptenone		ether/DMS ether		25 45	3 2	S C	92
132	203	2-cyclohexenone		erner		77	$\tilde{7}$	R S R S S	32
133	204			DMS		7	8	$\ddot{s}$	
134	207					92	68	$\boldsymbol{S}$	96
135				ether/DMS		79	16	S R	
136	208	2-cyclopentenone	Me	ether		<b>4</b> 0	32	R	97
137 138		2-cyclohexenone	n-Bu Me			51 57	45 58	S	
139		2-cyclonexellone	n-Bu			92	83	S S S	
140				DMS		60	83	$\boldsymbol{s}$	96
141				THF		22	1	s	
142		0	Ph	ether		30	97	S	07
143 144		2-cycloheptenone	Me <i>n-</i> Bu			60 63	97 96	S ND	97
177									
145		2-cyclooctenone	Me			48	67	ND	

Table 28. (Continued)

entry	ligand ^b	substrate	R	solvent	CuX	% yield	% ee	R/S	ref
147	209	2-cyclohexenone		ether		69	84	S	92
148		2-cycloheptenone	3.6			57	.8	$\overset{S}{\sim}$	
149	010	0lahamamama	Me			4	95	$S_{\mathbf{S}}$	
150 151	210 211	2-cyclohexenone 2-cyclohexenone	<i>n-</i> Bu <i>n-</i> Bu			71 52	55 19	SSSSSSSSSSSRSR	96
152	211	z-cyclonexenone	n-Du	DMS		49	19	3	90
153		2-cycloheptenone		ether		76	4	S	92
154	212	2-cyclohexenone	n-Bu	DMS		100	$7\overline{1}$	S	96
155		2 0,010110110110	,, 24	ether		75	55	Š	00
156				THF		20	6	$\tilde{s}$	
157			Ph	ether/DMS		51	71	$\boldsymbol{s}$	
158	209		<i>n-</i> Bu	DMS		39	4	$\boldsymbol{S}$	
159	214			ether		79	25	S	
160		2-cycloheptenone				35	68	$S_{\tilde{s}}$	92
161	215	2-cyclohexenone				28	28	S	96
162	216			DMG		63	19	R	92
163	217			DMS		2	1	S	
164	218					25 58	11 32	R R	
165 166	219 220					20	32 35	R R	
167	198	2-methyl-2-cyclopentenor	ne 2-propenyl			76	76	R R	95
		· · · · · ·				10	10	11	30
		tead of PhLi. b The ligand	s are as iollows:						
R. _N	Ar I	Pn		i .	,			^	
N.N.	^	Ph N		$\downarrow$ $\uparrow$	(	1			
Н		н	(		$\nearrow_{\mathbb{R}}$		$H_2$	N T K2	
168 R = H, A	Ar = Ph	175 $176 = (S)-2$ am	noheptane	$\gamma$ NH ₂ $\gamma$	7.02	1		H N	
	Ar = 1-naphthyl	177 = (S)-1-am	ino-2-methylbutane	$\wedge$	$\mathbf{k}_1$		182 R	$_{1}$ = H, $R_{2}$ =	n-Pr
170 R = H, <i>I</i> 171 R = Me,	Ar = 2-naphthyl			178 179 R ₁ =	Ми. р. – н	181	183 R	$_1 = 3$ -pyridy	$1, R_2 = H$
	Ar = 1-naphthy.	1		1/8 1/9 R ₁ =	$NH_2, R_2 = H$ $H, R_2 = NH_2$	101			
173 R = <i>i-</i> Pr	, Ar = Ph					'			
$174 R = c-H_0$	exyl, Ar = Ph					•	^		
Дr	Ph	$R_{\sim}$ NH ₂	9 /	✓NH ₂ /	NH ₂				
, N√	人	HS. OEt Ph	H ₂ N NH	J	,	MeO N H	н. Г		
H			~o,	"NH ₂		**	H	O,	
104 4	DL	186 R = H 188	189 1	90 191		MeO		$\circ$	,OMe
184 Ar = 185 R = 3	: Pn 2-Methoxypheny		10, 1				ÖMe		OMe
		<del>-</del>						ÓМ	
							192		
MeO			MeO.	014	^_	<u> </u>		_l H	
L	N.	Phoo Ph	T T	OMe NH OMe		I N		<u>Ň</u> ~N~	
MeO' ~	HH()	H _{Me} $N$ S.N	MeO		→ N	н	_		
	н	Тиме н н	~		••	H	Ĺ		
	MeOOC	_0	_ n/m²	✓N✓	Me	00C	`	H	
	400	104		105				105	
	193	194		195		196		197	
				Ph.	v				
, אֹר				к-й <b>~</b> ~	X		1	R ₂	
11 1		NH ₂ 1	ŅH₂ ✓	н			R ₁ N	$\checkmark$	
198 X = ON	Мe	Ph NMe ₂	ph \\N\	207 R = Me, X = Ol	Me		н		
199 $X = c-1$		Мe		208 R = Me, $X = 1-1$	piperidinyl		214 D	= Me, R ₂ =	i.De
200 X = SP $201 X = SN$		205	206	209 R = Me, $X = 1$ -(210 R = Me, $X = 1$ -(				$=$ Me, $R_2$ =	
202 X = OC			200	211 R = $i$ -Pr, X = 1-		piperiumiyi)		= Bzl, R ₂ =	
203 X = c-N	VC4H10				· j				
204 X = N(	Me)CH ₂ CH ₂ N(I	vie) ₂		212 R = Me, X =	1	_			
				213 R = $c$ -Hexyl, X	= \forall^1 \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}\ext{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	`NMe ₂			
	ŀ	Ph i .	Ph 🔷	, Pn /"	¬ н				
	_N.	<b>~ハ~タ~ シ</b> /~	~ <mark>~</mark> √√ /¹	/~ ^ñ	^N ✓ ^N ✓				
		1	н	н	I Ph				

### D. Lithium Diorganocuprates with Scalemic Noncovalently Bound Ligands

217

Several groups have synthesized and tested reagents made from various organometallic species and scalemic neutral organic ligands. One of the first examples of ECA was reported by Kretchmer in which Grignard

218

219

220

reagents plus catalytic CuCl were combined with sparteine (226) and reacted with several enones (Table 31). 106 The highest reported ee was 6%.

Several years later, Langer and Seebach reported using the chiral cosolvent, 2,3-dimethoxy-N,N,N',N'-tetramethyl-1,4-butanediamine (DDB, 227), to promote ECA to various substrates (Table 32).¹⁰⁷ Three types

Figure 14.

Scheme 28. Enantioselective Synthesis of (+)-Confertin

of reagent were used: organocuprates, organozincates, and organolithiums. In general, the ee's were low although one reaction reached as high as 43% ee. The solvent, in principle, is available in substantial quantities. Given the expense of making or purchasing this solvent and the low ee's obtained in these reactions, it is currently not a useful approach for stereoselective conjugate addition.

Leyendecker examined a series of chiral ligands 228-237 derived from hydroxyproline in the reaction of lithium dimethyl cuprate with chalcone (Table 33). 108 In one case, ee's of 94% were obtained. They previously found that bidentate ligands give better results than unidentate ligands and reasoned that tridentate ligands would perform even better. They also discovered that N-carboalkoxylated and N-acylated ligands 230–232 and 234-237 gives better results than N-alkylated ligands 228, 229, and 231 and that dilution of the reaction mixtures does not change enantioselectivities. They postulated that simultaneous chelation of lithium and copper is important in order to attain high enantioselectivities (Figure 15). The proposal that the ligand chelates with copper runs counter to the suggestion of van Koten and Noltes that copper(I) in cuprates does not readily chelate with electron-rich ligands and therefore will not be an important aspect of enantioselective cuprate reagents. 109

Recently, Alexakis, Mutti, and Normant reported using chiral phosphorus compounds derived from HMPT with n-BuCu to attain ECA with 2-cyclohexenone (Table 34). 110 The highest ee observed was 76% and depended in part on having 4 equiv of LiBr present

Table 29. Catalytic Enantioselective Conjugate Addition of RMgX to 2-Cyclohexen-1-one

entry	catalyst	R	silyl reagent	% yield	% <b>ee</b>	R/S
1	221	n-Bu	_	96	20	s
2	222			89	15	$\boldsymbol{s}$
3			Me ₃ SiCl	95	51	s s s
4				98	60	s
5				63	0	
6			Ph ₂ (t-Bu)SiCl	26	70	S
7				53	74	$\boldsymbol{s}$
8	221			57	74	$\boldsymbol{s}$
9				97	78	SSSSSSRS
10				51	27	s
11	222		(i-Pr) ₃ SiOTf	98	44	S
12	221		$(t-Bu)_2Si(OTf)_2$	67	40	$\boldsymbol{s}$
13		Me	Me ₃ SiCl	54	30ª	R
14		Et		87	14	S
15		vinyl		92	9	$\boldsymbol{s}$
16		Ph		96	0	
17		Me	(t-Bu) ₂ MeSiOTf	95	$10^a$	R
18		Et		54	35	s
19		Ph	$(t-Bu)_2$ MeSiOTf	57	0	

^a The enantiomeric form of the ligand was used.

$$Ar^* = NMe_2$$

$$R = Me$$

$$224 R = Me$$

$$225 R = cyclohexyl$$

a. X = Me	$Ar^* = 225$	R = 2-pyridyl	23% ee
b. X = Me	$Ar^{+} = 225$	R = Me	4% ee
c. $X = OMe$	$Ar^* = 225$	R = Me	1% ee

in the reaction mixture. Forming the organocopper reagent from Grignard reagents or using LiI gives poorer results than those reactions in which organolithium reagents and LiBr are used.

#### E. Dialkylzinc Reagents and Scalemic Catalysts

Luche et al. found that Ni(II) salts facilitate the conjugate addition of dialkylzinc to enones. 111 Several groups have taken this reaction and rendered it enantioselective. In their initial studies, Soai et al. reported that ECA to prochiral enones is possible using dialkylzinc reagents and Ni(acac)₂ in the presence of a chiral auxiliary. 112,113 The catalyst is formed by stirring 1 equiv of Ni(acac)₂ or NiBr₂ with N,N-dibutylnorephedrine (251) in toluene at 80 °C (Table 35, entries 1–6). The substrate is added, the reaction mixture is cooled to -30 °C, and Me₂Zn or Et₂Zn is added. The enantioselectivity in these reactions is partially a function of

Table 30. Enantioselective Conjugate Addition of Scalemic Azaenolates with 2-Cycloalkenones

substrate metal-azaenolate % yield % **e**e R/Sref entry 17 R 1 2-cyclopentenone 54 104a /CuI  $R = CH_2Ph$  $R = Pr^{i}$ 3  $R = Bu^{t}(R \text{ enantiomer})$ R 89 75 R  $R = CH_2Ph$ 41 28 5  $R = Pr^{i}$ 46 23 R S 6  $R = Bu^t$ 30 44 7  $R = Bu^{t}(R \text{ enantiomer})$ 31 44 R 78 8 78 104b 9 73 92 R 10 2-cyclohexenone 78 71 S11 48 88 S

Scheme 29. Enantioselective Synthesis of the Scalemic *trans*-Dihydrindandione System

the ratio of catalyst to substrate. Increasing the amount of catalyst gives better ee's.

Soai et al. later reported that the enantioselectivity of these reactions could be improved significantly by using a combination of Ni(II)–2,2'-dipyridyl chiral ligand in acetonitrile/toluene to form the catalyst.  114  ECA of dialkylzinc to aryl substituted enones affords  $\beta$ -substituted ketones in up to 90% ee (entries 15 and 16). In addition to the chiral ligand and Ni(II), both the achiral ligand and acetonitrile were essential in obtaining the product with high ee. Other achiral ligands were used as well, but not with the same degree of success.

Bolm and Ewald recently published the use of nickelcatalyzed ECA of organozinc reagents to  $\alpha,\beta$ -unsatur-

Table 31. Copper-Catalyzed Enantioselective Conjugate Addition of Grignard Reagents to Enones with Sparteine (226)

entry	substrate	Grignard	solvent	% yield	% ee
1	2-cyclohexenone	MeMgI/CuCl	ether	17	6
2	•	PhMgBr/CuCl		17	<1
$3^a$	1,2-diphenyl- propenone	MeMgI/CuCl	benzene	45	3
4				50	5
5	3-penten-2-one	EtMgBr/CuCl	ether	10	5
a No	copper(I) salt use	ed.			

ated ketones using the chiral 2,2'-dipyridyl ligand 254.  115  Optically active  $\beta$ -substituted ketones are obtained in high yields and with ee's as high as 74%. They have also observed asymmetric amplification with their system.  116  For example, when ligand 257 of 10% ee is used, product of 44% ee is obtained. Bolm suggests asymmetric amplification occurs as a result of the formation of dimeric nickel catalysts. If the nickel complexes with an unequal mixture of enantiomeric ligands, one can form SS (where S is the predominant enantiomer) and SR complexes. If the SR (meso) complex is relatively unreactive as a catalyst, one would expect the enantioselectivity of the reaction to be higher than the enantiomeric purity of the ligand. Although this reaction is catalytic in Ni, better ee's are obtained

Table 32. Enantioselective Conjugate Addition of Organometallic Reagents to Enones with DDB (227) as Cosolvent

227

	227								
entry	substrate	reagent	solvent	% yield	% ee	R/S			
1	2-cyclohexenone	Me ₂ CuLi	ether	54	14	S			
2		Me₃ZnLi		63	[-0.74]	~			
3		(n-Bu) ₂ CuLi		84 65	15	S			
4 5				81	7 5	S S S			
5				45	[-0.78]	S			
6 7		(n-Bu) ₃ ZnLi		84	16	S			
8		( <i>n</i> -Bu/3211131		81	24	S S			
9				52	[-1.04]	~			
10		(PhS) ₃ CLi		80	[-5.48]				
11	2-cyclopentenone	(n-Bu) ₂ CuLi		64	[-10.0]				
12		(n-Bu) ₃ ZnLi		78	[+6.93]				
13		$[Me_3Si](Me_2S)_2CLi$		38	5				
14	crotonaldehyde	$(n-\mathbf{B}\mathbf{u})_2\mathbf{C}\mathbf{u}\mathbf{L}\mathbf{i}$		63	[-0.32]				
15		$(n-\mathbf{B}\mathbf{u})_3\mathbf{Z}\mathbf{n}\mathbf{L}\mathbf{i}$		39	[-0.32]				
16	cinnamaldehyde	Me ₂ CuLi		<b>54</b>	[-0.10]				
17		(n-Bu) ₂ CuLi		51	[+0.61]				
18	1,3-diphenyl-2-propenone	(n-Bu) ₂ CuLi		75	[-0.75]				
19	2-(2-cyclohexenylidene)-1,3-dithiane	n-BuLi		78	[-9.5]	_			
20	nitropropene		pentane	49	28	R R R R			
21		$(n-\mathrm{Bu})_2\mathrm{CuLi}$	4 / 13	49	27	ĸ			
22		( P) 7I:	pentane/ether	54 50	15	ĸ			
23		$(n-Bu)_3$ ZnLi		59 54	27 15	π D			
24 25		<b></b> \$	pentane	$\begin{array}{c} 54 \\ 72 \end{array}$	15 43	п			
20		Cs∕Li	pentane	12	40				
26		NO N_Li		62	[+0.054]				
27		$\langle N \rangle_{\text{Li}}$		80	[-4.25]				
28	eta-nitrostyrene	NO <i>n-</i> BuLi		60	[+1.22]				
29	p-introstyrene	<i>n</i> -Bubi		55	[+0.43]				
20		_S <mark>≻</mark> Li		00	[10.40]				
30	nitropropene	OLi		48	[-0.39]				
31		OLi .		70	6/[+0.12]				
32		→ _o OLi		75	[+0.10]				
33		OLi		57	12/[+0.64]				
2.1		, ,		22	10/514.053				
34	eta-nitrostyrene	OLi N		68	10/[+1.25]				
		1							

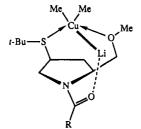



Figure 15.

when more reagent is used (compare entries 27 and 28 vs 32-34).

Soai et al. have also described ECA of diethylzinc to enones using chiral  $\beta$ -amino alcohol, 1-phenyl-2-(1-piperidinyl)propan-1-ol 255 and 256 in catalytic and sto-

ichiometric amounts to facilitate the reaction. No additional transition metal catalyst is added. When enones 246 and 248–250 are reacted with  $Et_2Zn$  using 0.25 equiv of the 1S,2R isomer, 255, the corresponding ketone products are obtained with 60–80% ee (entries 37, 40, and 42). When a stoichiometric amount of 255 is employed, ee's of the product increase to 81-94% (entries 38, 39, 41, 43, and 44). Reaction times appear to be considerably longer than those employing nickel catalysts.

### F. Grignard Reagents Catalyzed by Scalemic Arenethiolatocopper(I) Complexes

van Koten et al. recently described the catalytic conjugate addition of MeMgI to 4-phenyl-3-buten-2-

Table 33. Enantioselective Conjugate Addition of LiCuMe₂ to Chalcone Using Noncovalently Bound Hydroxyproline-Derived Ligands

one in up to 57% ee using the chiral arenethiolato-copper(I) complex shown below (eq 20). This complex is similar to achiral complexes that have been developed and structurally characterized. The reaction is performed by dissolving the thiolato complex and 4-phenyl-3-buten-2-one in ether at 0°C and adding MeMgI slowly. When excess MeMgI is present in the reaction mixture, the enantioselectivity of the reaction is low (ca. 3%). The mixed cuprate, LiCu(SAr)(Me) gives predominantly 1,4-addition but is not enantioselective.

### G. Grignard Reagents with Scalemic Zinc Catalysts

Isobe et al. found that lithium trialkylzincates react with enones to give conjugate addition. 120 Others discovered that alkoxides could be substituted for some of the alkyl groups as nontransferable ligands. 121 Jansen and Feringa subsequently found that N, N, N', N'tetramethylethylenediamine complexes of ZnCl2 catalyze the conjugate addition of Grignard reagents to enones.122 Using this reaction, Jansen and Feringa screened a number of chiral ligands to see if they could render this reaction enantioselective (Table 36). 123 They looked at the conjugate addition of various alkyl moieties to 2-cyclohexenone. As part of their study. they also looked at the influence of solvent, counterions, rate of addition, and temperature. The advantage of this system is that it is catalytic and uses inexpensive and readily prepared Grignard reagents. In general, the reactions proceed with high chemical yields and selectivity for 1,4 vs 1,2 addition. The enantioselectivities, however, are poor, reaching only as high as 33%in one case. They found the highest enantioselectivities are attained by preparing the catalyst in situ from the lithium salt of the chiral diamino alcohol ligand and performing the reaction in THF. A mechanism was suggested for this reaction in which 2-cyclohex-

Table 34. Enantioselective Conjugate Addition to 2-Cyclohexenone with Organocopper Reagents and Scalemic Noncovalently Bound Phosphorus Ligands

entry	n-BuM	ligand ^a	copper source and added salts	ligand equiv	solvent	% yield	% ee
1	BuLi/hexane	238	CuI	1	THF	30	22
2	·			2		35	38
3				3		43	19
4				2	$Et_2O$	43	22
5			CuI + TMSCl		THF	15	0
6			CuI + 4LiBr			56	65
7			CuI + 4LiI			45	44
8			$CuBr-Me_2S + 4LiBr$			45	40
9	BuLi-LiBr/Et ₂ O		CuI + 3LiBr			62	62
10	BuMgBr/Et ₂ O		CuI + 4LiBr			28	19
11	0.5 equiv BuLi/hexane					27	75
12	2 equiv BuLi/hexane					>90	0-75
13	BuLi/hexane	239				61	76
14	·	240				10	62
15		241				12	14
16		242				55	rac
17		243				62	23

^a The ligands are as follows:

Ph  
Ne Ph  
R P P NMe₂

238 R = Me, R₁ = NMe₂
239 R = Me, R₁ = NMe₂
240 R = 
$$i$$
-Pr, R₁ = NMe₂
241 R = Me, R₁ = morpholinyl

Table 35. Catalyzed Enantioselective Conjugate Addition of Dialkylzinc to Enones

OR 
$$R_1$$
  $R_2$   $R_2$ Zn,  $R_1$   $R_2$   $R_1$   $R_2$   $R_1$   $R_2$   $R_1$   $R_2$  244  $R_1$ ,  $R_2$  = Ph 245  $R_1$  = Ph;  $R_2$  = Me 246  $R_1$  = Me;  $R_2$  = Ph 247  $R_1$  = Ph;  $R_2$  = Ph 247  $R_1$  = Ph;  $R_2$  = P-MeOPh 248  $R_1$  = Ph;  $R_2$  = CPh₃ 249  $R_1$  = Ph;  $R_2$  = Bu^t 250  $R_1$  = Ph;  $R_2$  = Adamantyl

entry	$NiX_2$	ligand ^a		substrate	R	Ni:L*:S	% yield	% ee	R/S	ref
1	Ni(acac) ₂	251		244	Me	1:1.2:1.7	72	40	R	112
2					Et	1:1.2:2.0	75	45	$\boldsymbol{R}$	
3						1:1.2:17	94	20	$\boldsymbol{R}$	
4		252				1:1.2:17	89	22	$\boldsymbol{S}$	
5		251		245		1:1.2:1.7	63	12	R	
6				246		1:1.2:2.0	78	44	R	
7	$NiBr_2$			244		1:1.2:4.0	32	48	R	113
8	_					1:1.2:33	NR	36	R	
9						1:1.2:2.5	NR	32	$\boldsymbol{R}$	
10	$NiCl_2$					1:1.2:4	NR	30	$\boldsymbol{R}$	
11	NiI ₂						NR	3	R	
12	$NiBr_2$				n-Bu		16	43	ND	
13				245	Et		32	18	$\boldsymbol{S}$	
14				246			40	14	S	
15	Ni(acac) ₂	251/2,2'-bipyridy	-1	244		1:2.4:14	47	90	$\tilde{R}$	114
16	111(acac)2	253/2,2'-bipyridy	·Ī			1:2.4:17	63	82	R	
17		251/piperazine	•			2.2.1.1	44	87	$\stackrel{\cdots}{R}$	
18		251/1,10-phenan	throline				72	81	$\stackrel{\sim}{R}$	
19		251/2,2'-bipyridy	1		n-Bu	1:2.4:14	47	74	$\stackrel{r}{R}$	
20		251/2,2'-bipyridy		247	Et	1.2.7.17	58	80	R	
				244	EL	1:2.4:17	87	71	$\stackrel{R}{R}$	
21		251/2,2'-bipyridy 251/2,2'-biquinol		244		1.2.4.17	92	70	$\overset{R}{R}$	
22			me				89	70 71	R R	
23		251/1,2-DPPE							R R	
24		251/morpholine					84	71 70	л n	
25		251/quinuclidine					85	72	R	
26		251/pyridine					84	71	R	
27		254				1:30:100	55	72	R	115
28						1:20:100	75	72	R	
29						1:10:100	82	54	R	
30						1:5:100	74	20	R	
31						1:5:50	66	48	R	
32						1:3:50	73	18	R	
33						1:3:20	58	58	R	
34						1:1:20	69	18	R	
35				247		1:10:20	68	74	ND	
36				245		1:5:20	76	2	R	
37		255		248		0:1:4	81	80	(+)	117
38						0:1:1	96	94	(+)	
39		256					95	93	(-)	
40		255		249		0:1:4	82	72	Ŕ	
41		-00				0:1:1	84	81	$\ddot{R}$	
42				250		0:1:4	88	60	ND	
43						0:1:1	84	82	ND	
44				246		0.1.1	34	82	R	
45		257		244		0:30:100	62	86	$\stackrel{R}{R}$	116
46		258		244		1:20:100	NG	86	R	110
	ands are as f			/ <del>-</del>	^	•	110	00	1.	
Ph N(n-1	Bu) ₂ Ph	(n-Bu) ₂ Ph	Ви—ОН	N— HO But	Ph N	Ph N	$\bigcirc \dashv$	HQ_Bn _t	$\bigcirc$	N—Bu
251	252	253	254	4	255	256	257		258	

enone is tethered to the chiral tetracoordinated alkylzinc complex through the carbonyl oxygen (Figure 16). The Grignard reagent also becomes tethered to the zinc complex through the alkoxide oxygen. The enone and Grignard, having been brought into close proximity, react with transfer of the alkyl group to the  $\beta$ -position of the enone. The mechanism does not attempt to account for the stereochemical outcome of the reaction.

# IV. Enantioselective Conjugate Addition of Organolithium Reagents to Prochiral $\alpha,\beta$ -Unsaturated Aldimines

Tomioka, Shindo, and Koga have developed a protocol for ECA of organolithium compounds to  $\alpha,\beta$ -unsaturated aldimines using enantiomerically pure  $C_2$  symmetric diethers and a diamine to direct the ster-

Table 36. Enantioselective Conjugate Addition of Grignard Reagents to 2-Cyclohexenone Using Chiral Zinc Complexes

		~	2. H ₃ O	<b>~</b> `R			
entry	catalyst ^a	R	X	note	%	yield	% ee
1 2 3	259 260	i-Pr	Br			91 90 90	18 16 26
4 5 6 7 8 9	259	Et	Br		,	95 68	26 4 5 22 9 0 17 26 3 7
6	200	n-Bu				74	5
7		i-Pr	Cl			97 65	22
8		n-Bu	I Cl			65 96	9
10			I			69	ő
11	260	i-Pr	Cl			97	17
12			Br			92	26
13 14			I Cl	0 °C		<b>49</b> 81	3 7
15	262		<b>~</b> .	0 °C		75	7
16				− <del>9</del> 0 °C		97	17 21
17	263			LiOt-Bu		95	21
18 19				NaOt-Bu KOt-Bu		89 93	11 17
20	261	i-Pr	Br	Nov-Bu		87	17
21	264					83	14
22	265 266		Cl			93	17 21
23 24	266 267					91 85	17
25	159					95	15
26	160					92	16
27	128					96 87	13
28 29	129 268					89	ა 21
30	269					97	13 5 21 3
31	270					95	11
32	152					91 88	21
33 34	271 272					87	4
35	273					95	6
36	274					96	.8
37 38	275 276					94 99	16 17
38 39	276 277					87	21 4 4 6 8 16 17 6
40	278					89	10
^a Catalysts are	as follows:						
CI Zn	Zn R	Ph N Z	Ph X	Ph X	OH Bzl-NH	Bzi N OI	H
259	260 R = Me 261 R = Et	262 X = 263 X =		264 X = CH ₂ CH ₂ SMe 265 X = H	266	267	268
→ OH	OH OH M	2N PPh2	PP	Ph ₂ P N H	Tos N NTos		s s
269	270	271	272	273	274	275	
	S S	S O iPr		O O O O	N Bzl		
	276		277	278			

eochemical course of addition (Table 37).¹²⁴ The reaction does not occur readily in the absence of the chiral diethers or diamine. As shown, the reaction works well with both cyclic and acyclic aldimines.

The reaction is believed to occur by forming a lithium complex which includes the bidentate chiral ligand, the alkyl group and the aldimine via complexation with the nitrogen (Figure 17). Transfer of the R group to

Figure 16. Mechanism of zinc-catalyzed conjugate addition of Grignard reagents.

Table 37. Enantioselective Conjugate Addition of Organolithium Reagents to  $\alpha,\beta$ -Unsaturated Aldimines in the Presence of Chiral C2 Symmetric Diethers

c-C ₆ H ₁₁			СНО
N	RLi/chiral diether	H ₃ O ⁺	D √R
$R_1$	toluene		$\mathbf{R_1}$ $\mathbf{R_2}$
$R_2$			

entry	iminea	R	chiral diether b	% yield	% ee	config
1	279	n-Bu	285	80	91	1R,2S
2			286	92	53	
2 3			287	46	6	
4 5			288	26	11	1S,2R
5		Ph	285	82	94	1R,2S
6			<b>286</b> $(S,S)$	68	90	1S,2R
7	280		285	61	96	1S, 2S
8			<b>286</b> $(S,S)$	69	80	1R,2R
9	281		285	59	98	1S,2S
10	•		<b>286</b> $(S,S)$	76	90	1R,2R
11	282		285	58	>99	$\boldsymbol{S}$
12			<b>286</b> $(S,S)$	45	93	R
13	283	n-Bu	285	40	82	R
14	284	Ph	285	48	>99	$\boldsymbol{S}$
15			<b>286</b> $(S,S)$	42	94	R

^aImines are as follows:

bChiral diethers are as follows:

Figure 17.

the bottom face of the olefin yields, after hydrolysis, the product.

#### IV. Summary

Over the last 25 years, many approaches to the problem of asymmetric conjugate addition to  $\alpha,\beta$ unsaturated substrates have been investigated. A variety of very successful methods have been developed for diastereoselective conjugate addition to acyclic and cyclic scalemic  $\alpha,\beta$ -unsaturated substrates. In a few

instances, high enantioselectivities have been achieved in the conjugate addition of scalemic reagents with prochiral cyclic and acyclic  $\alpha,\beta$ -unsaturated ketones. Good asymmetric induction has also been demonstrated with acyclic aldimines. The ideal reagent for asymmetric conjugate addition, of course, is a scalemic catalyst which promotes enantioselective conjugate addition of readily available organometallic reagents such as Grignard and organolithium reagents to a wide variety of cyclic and acyclic  $\alpha,\beta$ -unsaturated substrates in high chemical yield and high enantioselectivity. The reagent capable of doing this has not yet been developed and remains an important challenge in synthetic organic reagent development.

#### VI. References

- (1) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Tetrahedron Organic Chemistry Series, No. 9; Pergamon: Oxford,
- Lee, V. J. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, Chapter 1.2.
- (3) (a) Kozlowski, J. A. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, Chapter 1.4.
  (b) Posner, G. H. Org. React. 1972, 19, 1.
  (c) Posner, G. H. An Introduction to Synthesis Using Organocuprate Reagents; Wiley: New York, 1980.
  (d) Lipschutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A. Tetrahedron 1984, 40, 5005.
  (e) Lipschutz, B. H. Synthesis 1987, 295.
  (b) Lipsch A. F. Ad. Organocup. Chem. 1974. Synthesis 1987, 325. (f) Jukes, A. E. Adv. Organomet. Chem. 1974,
- (4) For previous reviews of stereoselective conjugate additions see: (a) Schmalz, H.-G. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds., Pergamon: Oxford, 1991; Vol. 4, Chapter 1.5. (b) Tomioka, K.; Koga, K. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1983; Vol. 2, p 201.

  (5) The term scalemic refers to unequal mixtures of enantiomers:
- Heathcock, C. H.; Finkelstein, B. L.; Jarvi, E. T.; Radel, P. A.; Hadley, C. R. J. Org. Chem. 1988, 53, 1922.

  (6) Kharasch, M. S.; Tawney, P. O. J. Am. Chem. Soc. 1941, 63, 2308.

  (7) Bitsch, V.; Jacobsen, S.; Andersen, I. G. K.; Munch-Petersen, J.
- Acta Chem. Scand. 1963, 17, 1433 and references cited therein. Kawana, M.; Emoto, S. Bull. Chem. Soc. Jpn. 1966, 39, 910. Inouye, Y.; Walborsky, H. M. J. Org. Chem. 1962, 27, 2706. Gustafsson, B.; Hansson, A.-T.; Ullenius, C. Acta Chem. Scand.,
- (10)Ser. B 1980, 34, 113.
  (11) Yamamoto, Y.; Maruyama, K. J. Am. Chem. Soc. 1978, 100, 3240.

- (12) Oppolzer, W.; Löher, H. J. Helv. Chim. Acta 1981, 64, 2808.
  (13) Oppolzer, W.; Moretti, R.; Godel, T.; Meunier, A.; Löher, H. Tetrahedron Lett. 1983, 24, 4971.
- (14) For a review of reactions involving camphor-derived chiral aux-

- iliaries, see: Oppolzer, W. Tetrahedron 1987, 43, 1969.

  (15) Oppolzer, W.; Stevenson, T. Tetrahedron Lett. 1986, 27, 1139.

  (16) Oppolzer, W.; Moretti, R. Tetrahedron 1987, 43, 1969.

  (17) Oppolzer, W.; Godel, T. Tetrahedron 1987, 43, 1969.

  (18) Oppolzer, W.; Dudfield, P.; Stevenson, T.; Godel, T. Helv. Chim. Acta 1985, 68, 212.
- (19) Oppolzer, W.; Moretti, R.; Bernardinelli, G. Tetrahedron Lett. 1986, *27*. 4713.
- (20) Somfai, P.; Tanner, D.; Olsson, T. Tetrahedron 1985, 41, 5973.
- (21) Bergdahl, M.; Nilsson, M.; Olsson, T. J. Organomet. Chem. 1990, *391*, C19.
- (22) Helmchen, G.; Wegner, G. Tetrahedron Lett. 1985, 26, 6047.
  (23) Helmchen, G.; Wegner, G. Tetrahedron Lett. 1985, 26, 6051.
  (24) (a) Fang, C.; Suemune, H.; Sakai, K. Tetrahedron Lett. 1990, 31,
- 4751. (b) Fang, C.; Ogawa, T.; Suemune, H.; Sakai, K. Tetrahedron: Asymmetry 1991, 2, 389.
- (25) Fleming, I.; Kindon, N. D. J. Chem. Soc., Chem. Commun. 1987,
- (26) Fuji, K.; Tanaka, K.; Mizuchi, M.; Hosoi, S. Tetrahedron Lett. 1991, 32, 7277.
- Alexakis, A.; Sedrani, R.; Mangeney, P.; Normant, J. F. Tetrahedron
- Lett. 1988, 29, 4411.
  (28) Asami, M.; Mukaiyama, T. Chem. Lett. 1979, 569.
- (29) (a) Scolastico, C. Pure Appl. Chem. 1988, 60, 1689. (b) Bernardi, A.; Cardani, S.; Pilati, T.; Poli, G.; Scolastico, C.; Villa, R. J. Org. Chem. 1988, 53, 1600. (c) Bernardi, A.; Cardani, S.; Poli, G.; Sca-
- Chem. 1988, 53, 1000. (c) Bernard, A.; Cardani, S.; Foli, G.; Scalastico, C. J. Org. Chem. 1986, 51, 5043.
  (30) Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1981, 913.
  (31) Kogure, T.; Eliel, E. L. J. Org. Chem. 1984, 49, 576.
  (32) (a) Mukaiyama, T.; Takeda, T.; Osaki, M. Chem. Lett. 1977, 1165.
  (b) Mukaiyama, T.; Takeda, T.; Fujimoto, K. Bull. Chem. Soc. Jpn. 1978, 51, 3368. (c) Mukaiyama, T.; Fujimoto, K.; Takeda, T. Chem. Lett. 1979, 1207. (d) Mukaiyama, T.; Fujimoto, K.; Hirose, T.; Takeda, T. Chem. Lett. 1989, 428.
  - T.; Takeda, T. Chem. Lett. 1980, 635.
- Takeda, T.; Mukaiyama, T. Chem. Lett. 1980, 163. Soai, K.; Machida, H.; Yokota, N. J. Chem. Soc. Perkin Trans. 1 1987, 1909.

- (35) Soai, K.; Machida, H.; Ookawa, A. J. Chem. Soc., Chem. Commun. 1985, 469.
- Soai, K.; Ookawa, A. J. Chem. Soc. Perkin Trans. 1 1986, 759.
- Tomioka, K.; Suenaga, T.; Koga, K. Tetrahedron Lett. 1986, 27,
- (38) Oppolzer, W.; Mills, R. J.; Pachinger, W.; Stevenson, T. Helv. Chim. Acta 1986, 69, 1542.
- (39) Oppolzer, W.; Poli, G.; Kingma, A. J.; Starkemann, C.; Bernardinelli, G. Helv. Chim. Acta 1987, 70, 2201.
- (40) Oppolzer, W.; Kingma, A. J. Helv. Chim. Acta 1989, 72, 1337.
  (41) Oppolzer, W.; Kingma, A. J.; Poli, G. Tetrahedron 1989, 45, 479.
- (42) Oppolzer, W.; Schneider, P. Helv. Chim. Acta 1986, 69, 1817.
- (43) (a) Posner, G. H. Acc. Chem. Res. 1987, 20, 72. (b) Posner, G. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1983; Vol. 2, p 239.
  (44) Posner, G. H.; Frye, L. L.; Hulce, M. Tetrahedron 1984, 40, 1401.

- (45) Posner, G. H.; Frye, L. L. Isr. J. Chem. 1984, 24, 88.
   (46) Saengchantara, S. T.; Wallace, T. W. Tetrahedron 1990, 46, 6553.
- (47) Schultz, A. G.; Harrington, R. E. J. Am. Chem. Soc. 1991, 113,
- Smith, A. B.; Dunlap, N. K.; Sulikowski, G. A. Tetrahedron Lett. (48)
- Jung, M. E.; Lew, W. Tetrahedron Lett. 1990, 31, 623. Vemura, M.; Oda, H.; Minami, T.; Hayashi, Y. Tetrahedron Lett. (50)**1991**, *32*, 4565.
- (51) Alexakis, A.; Mangeney, P.; Ghribi, A.; Marek, I.; Sedrani, R.; Guir, C.; Normant, J. F. Pure Appl. Chem. 1988, 60, 49.
  (52) (a) Fujiwara, J.; Fukutani, Y.; Hasegawa, M.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1984, 106, 5004. (b) Fukutani, Y.; Maruoka, K.; Yamamoto, H. Tetrahedron Lett. 1984, 25, 5911.
- (a) Berlan, J.; Besace, Y.; Pourcelot, G.; Cresson, P. Tetrahedron 1986, 42, 4757. (b) Besace, Y.; Berlan, J.; Pourcelot, G.; Huche, M. J. Organomet. Chem. 1983, 247, C11. (c) Mangeney, P.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1983, 24, 373. (d) Huche, M.; Aubouet, J.; Pourcelot, G.; Berlan, J. Tetrahedron Lett. 1983, 24,
- (a) Berlan, J.; Besace, Y. Tetrahedron 1986, 42, 4767. (b) Berlan, J.; Besace, Y.; Prat, D.; Pourcelot, G. J. Organomet. Chem. 1984, 264, 399. (c) Berlan, J.; Besace, Y.; Pourcelot, G.; Cresson, P. J. Organomet. Chem. 1983, 256, 181.
- (55) Mangeney, P.; Alexakis, A.; Normant, J. F. Tetrahedron 1984, 40,
- (a) Meyers, A. I.; Whitten, C. E. J. Am. Chem. Soc. 1975, 97, 6266. (b) Meyers, A. I.; Smith, R. K.; Whitten, C. E. J. Org. Chem. 1979, 44, 2250.
- Meyers, A. I.; Whitten, C. E. Heterocycles 1976, 4, 1687.
- (58) Meyers, A. I.; Shipman, M. J. Org. Chem. 1991, 56, 7098.(59) Meyers, A. I.; Smith, R. K. Tetrahedron Lett. 1979, 2749.
- (60) Ziegler, F. E.; Gilligan, P. J. J. Org. Chem. 1981, 46, 3874.
- (61) Meyers, A. I.; Lutomski, K. A. J. Am. Chem. Soc. 1982, 104, 879. (62) Wilson, J. N.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 881.
- (63) Meyers, A. I.; Himmelsbach, R. J. J. Am. Chem. Soc. 1985, 107,
- (64) Meyers, A. I.; Flisak, J. R.; Aitken, R. A. J. Am. Chem. Soc. 1987, 109, 5446.
- Warshawsky, A. M.; Meyers, A. I. J. Am. Chem. Soc. 1990, 112, (65)8090.
- Meyers, A. I.; Meier, A.; Rawson, D. J. Tetrahedron Lett. 1992, 33, (66)853.
- (a) Meyers, A. I.; Natale, N. R.; Wettlaufer, D. G.; Rafii, S.; Clardy, J. Tetrahedron Lett. 1981, 5123. (b) Meyers, A. I.; Natale, N. R. Heterocycles 1982, 18, 13.
- (68) Gosmini, R.; Mangeney, P.; Alexakis, A.; Commerçon, M.; Normant, J. F. Synlett 1991, 111.
- Mangeney, P.; Gosmini, R.; Alexakis, A. Tetrahedron Lett. 1991, 32. 3981.
- (70) (a) Meyers, A. I.; Roth, G. P.; Hoyer, D.; Barner, B. A.; Laucher, D. J. Am. Chem. Soc. 1988, 110, 4611. (b) Barner, B. A.; Meyers,
   A. I. J. Am. Chem. Soc. 1984, 106, 1865. (c) Meyers, A. I.; Hoyer, D. Tetrahedron Lett. 1984, 25, 66. (d) Meyers, A. I.; Barner, B. A. J. Org. Chem. 1986, 51, 120.
  (71) Rawson, D. J.; Meyers, A. I. J. Org. Chem. 1991, 56, 2292.
  (72) Andrews, R. C.; Teague, S. J.; Meyers, A. I. J. Am. Chem. Soc. 1988,
- 110, 7854.
- Meyers, A. I.; Higashiyama, K. J. Org. Chem. 1987, 52, 4592.
- (74) Roth, G. P.; Rithner, C. D.; Meyers, A. I. Tetrahedron 1989, 45,
- Robichaud, A. J.; Meyers, A. I. J. Org. Chem. 1991, 56, 2607
- (76) Meyers, A. I.; Licini, G. Tetrahedron Lett. 1989, 30, 4049.
- (a) Hashimoto, S.; Yamada, S.; Koga, K. J. Am. Chem. Soc. 1976, 98, 7450. (b) Hashimoto, S.; Yamada, S.; Koga, K. Chem. Pharm. Bull. 1979, 27, 771
- (78) Hashimoto, S.; Kogen, H.; Tomioka, K.; Koga, K. Tetrahedron Lett. 1979, 3009.
- Tomioka, K.; Masumi, F.; Yamashita, T.; Koga, K. Tetrahedron Lett. 1984, 25, 333.
- (80) (a) Kogen, H.; Tomioka, K.; Hashimoto, S.; Koga, K. Tetrahedron Lett. 1980, 21, 4005. (b) Kogen, H.; Tomioka, K.; Hashimoto, S.; Koga, K. Tetrahedron 1981, 37, 3951.
- (81) Meyers, A. I.; Brown, J. D.; Laucher, D. Tetrahedron Lett. 1987, 28, 5283

- (82) Zweig, J. S.; Luche, J. L.; Barreiro, E.; Crabbé, P. Tetrahedron Lett. 1975, 2355
- (83) Ghozland, F.; Luche, J. L.; Crabbé, P. Bull. Soc. Chim. Belg. 1978. 87, 369.
- (84) Huche, M.; Berlan, J.; Pourcelot, G.; Cresson, P. Tetrahedron Lett. 1981, 22, 1329
- Gustafsson, B.; Hallnemo, G.; Ullenius, C. Acta Chem. Scand. Ser. B 1980, 34, 443.
- (86) Imamoto, T.; Mukaiyama, T. Chem. Lett. 1980, 45.
- (a) Leyendecker, F.; Jesser, F.; Ruhland, B. Tetrahedron Lett. 1981, 22, 3601. (b) Leyendecker, F.; Jesser, F.; Laucher, D. Tetrahedron Lett. 1983, 24, 3513.
- (88) Corey, E. J.; Naef, R.; Hannon, F. J. J. Am. Chem. Soc. 1986, 108, 7114.
- Tanaka, K.; Ushio, H.; Suzuki, H. J. Chem. Soc., Chem. Commun. 1990, 795
- (90) Tanaka, K.; Suzuki, H. J. Chem. Soc., Chem. Commun. 1991, 101.
- (91) Bertz, S. H.; Dabbagh, G.; Sundararajan, G. J. Org. Chem. 1986,
- (92) Rossiter, B. E.; Eguchi, M. Unpublished results, 1989.
- (93) Dieter, R. K.; Tokles, M. J. Am. Chem. Soc. 1987, 109, 2040.
- (94) Dieter, R. K.; Lagu, B.; Deo, N.; Dieter, J. W. Tetrahedron Lett. 1990, 31, 4105.
- (a) Müller, T. Dissertation, Universität Frankfurt-am Main, 1988. (b) Quinkert, G. Chimia 1988, 42, 207.
- (96) Rossiter, B. E.; Eguchi, M. Tetrahedron Lett. 1990, 31, 965.
- (97) Rossiter, B. E.; Eguchi, M.; Hernández, A. E.; Vickers, D.; Medich, J.; Marr, J.; Heinis, D. Tetrahedron Lett. 1991, 32, 3973.
- (98) Rossiter, B. E.; Miao, G.; Swingle, N. M.; Eguchi, M.; Hernández, A. E.; Patterson, R. G. Tetrahedron: Asymmetry 1992, 3, 231.
- (99) Ahn, K.-H.; Klassen, R. B.; Lippard, S. J. Organometallics 1990, 9, 3178.
- (100) Bott, S. G.; Ahn, K.-H.; Lippard, S. J. Acta Crystallogr. 1989, C45, 1738.
- (101) Andersson, S.; Jagner, S.; Nilsson, M.; Urso, F. J. Organomet. Chem. 1986, 301, 257
- (102) Gustafsson, B. Tetrahedron 1978, 34, 3023.
- (103) Malmberg, H.; Nilsson, M. J. Organomet. Chem. 1983, 243, 241.
- (a) Yamamoto, K.; Iijima, M.; Ogimura, Y. Tetrahedron Lett. 1982, 23, 3711. (b) Yamamoto, K.; Kanoh, M.; Yamamoto, N.; Tsuji, J. Tetrahedron Lett. 1987, 28, 6347.
- (105) Yamamoto, K.; Iijima, M.; Ogimura, Y.; Tsuji, J. Tetrahedron Lett. 1984, 25, 2813.
- (106) Kretchmer, R. A. J. Org. Chem. 1972, 37, 2744.
- (107) (a) Langer, W.; Seebach, D. Helv. Chim. Acta 1979, 62, 1710. (b) Seebach, D.; Kalinowski, H.-O.; Langer, W.; Crass, G.; Wilka, E.-M. Organic Syntheses; Wiley: New York, 1990; Vol. VII, p 41.
- (108) (a) Leyendecker, F.; Laucher, D. Tetrahedron Lett. 1983, 24, 3517. (b) Leyendecker, F.; Laucher, D. Nouv. J. Chim. 1985, 9, 13.
- (109) van Koten, G.; Noltes, J. G. J. Organomet. Chem. 1979, 174, 367.
- (110) Alexakis, A.; Mutti, S.; Normant, J. F. J. Am. Chem. Soc. 1991, 113,
- (111) (a) Petrier, C.; Barbosa, J. C. S.; Dupuy, C.; Luche, J. L. J. Org. Chem. 1985, 50, 5761. (b) Barbosa, J. C. S.; Petrier, C.; Luche, J. L. Tetrahedron Lett. 1985, 26, 829. (c) Petrier, C.; Luche, J. L.; Dupuy, C. Tetrahedron Lett. 1984, 25, 3463.
- (112) Soai, K.; Yokoyama, S.; Hayasaka, T.; Ebihara, K. J. Org. Chem. 1988, 53, 4148,
- (113) Soai, K.; Hayasaka, T.; Ugajin, S.; Yokoyama, S. Chem. Lett. 1988, 1571.
- (114) Soai, K.; Hayasaka, T.; Ugajin, S. J. Chem. Soc., Chem. Commun. 1989, 516.
- (115) Bolm, C.; Ewald, M. Tetrahedron Lett. 1990, 31, 5011.
- (116) Bolm, C. Tetrahedron: Asymmetry 1991, 2, 701.
- (117) Soai, K.; Okudo, M.; Okamoto, M. Tetrahedron Lett. 1991, 32, 95.
- (a) Lambert, F.; Knotter, D. M.; Janssen, M. D.; van Klaveren, M.; Boersma, J.; van Koten, G. Tetrahedron: Asymmetry 1991, 2, 1097. (b) van Koten, G. J. Organomet. Chem. 1990, 400, 283.
- (119) (a) Knotter, D. M.; Spek, A. L.; van Koten, G. J. Chem. Soc., Chem. Commun. 1989, 1738. (b) Knotter, D. M.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 1990, 112, 5896. (c) Knotter, D. M.; van Koten, G.; van Maanen, H. L.; Grove, D. M.; Spek, A. L. Angew. Chem., Int. Ed. Engl. 1989, 28, 341. (d) Knotter, D. M.; van Maanen, H. L.; Grove, D. M.; Spek, A. L.; van Koten, G. Inorg. Chem. 1991, 30, 3309.
- (120) Isobe, M.; Kondo, S.; Nagasawa, N.; Goto, T. Chem. Lett. 1977, 679.
- (121) (a) Watson, R. A.; Kjonaas, R. A. Tetrahedron Lett. 1986, 27, 1437. (b) Kjonaas, R. A.; Hoffer, R. K. J. Org. Chem. 1988, 53, 4133. (c) Jansen, J. F. G. A.; Feringa, B. L. Tetrahedron Lett. 1988, 29, 3593.
- (122) Jansen, J. F. G. A.; Feringa, B. L. J. Chem. Soc., Chem. Commun. 1989, 741.
- (123) Jansen, J. F. G. A.; Feringa, B. L. J. Org. Chem. 1990, 55, 4168.
- (124) Tomioka, K.; Shindo, M.; Koga, K. J. Am. Chem. Soc. 1989, 111,